摘要:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.
摘要:
A system includes a thermostat that controls a heating, ventilation, and cooling (HVAC) system of a structure in accordance with a signature-based temperature program. The thermostat includes one or more sensors configured to collect occupant activity data, a network interface configured to communicate with at least one online resource, a memory configured to store a signature-based temperature model, and a processor. The processor is configured to determine a temperature to implement from an output of the signature-based temperature model, wherein a current value of the at least one model input and a current measure of occupant activity are provided as inputs to the signature-based temperature model. The processor is further configured to provide control signals to the HVAC system to implement the determined temperature.
摘要:
The present disclosure relates to thermostatically controlling a HVAC system according to a temperature program that is at least partially responsive to observed or predicted changes in the type or degree of occupant activity. For example, a thermostat may process collected occupant activity data in conjunction a temperature program to identify a particular temperature setpoint that is associated with a statistically detectable change between a first and a second type or degree of occupant activity. During a time window that includes the identified temperature setpoint, if the thermostat detects the change between the first and the second type or degree of occupant activity in the occupant activity data, the thermostat may responsively implement the temperature associated with the identified temperature setpoint, regardless of whether the current time is prior to, the same as, or subsequent to the time associated with the identified temperature setpoint.
摘要:
The current application is directed to intelligent controllers that initially aggressively learn, and then continue, in a steady-state mode, to monitor, learn, and modify one or more control schedules that specify a desired operational behavior of a device, machine, system, or organization controlled by the intelligent controller. An intelligent controller generally acquires one or more initial control schedules through schedule-creation and schedule-modification interfaces or by accessing a default control schedule stored locally or remotely in a memory or mass-storage device. The intelligent controller then proceeds to learn, over time, a desired operational behavior for the device, machine, system, or organization controlled by the intelligent controller based on immediate-control inputs, schedule-modification inputs, and previous and current control schedules, encoding the desired operational behavior in one or more control schedules and/or sub-schedules.
摘要:
Arrangements for configuring a thermostat for controlling a heating, ventilation, and air conditioning (HVAC) system are presented. A thermostat may receive information indicative of the HVAC system comprising an air conditioner and information indicative of the HVAC system comprising a multi-stage heat pump. The thermostat may modify configuration information of the thermostat based on the information indicative of the air conditioner and the information indicative of the multi-stage heat pump. The thermostat may then control the HVAC system in accordance with the modified configuration information.
摘要:
HVAC schedules may be programmed for a thermostat using a combination of pre-existing schedules or templates and automated schedule learning. For example, a pre-existing schedule may be initiated on the thermostat and the automated schedule learning may be used to update the pre-existing schedule based on users' interactions with the thermostat. The preexisting HVAC schedules may be stored on a device or received from a social networking service or another online service that includes shared HVAC schedules.
摘要:
A thermostat includes a housing, a user interface, and a processing system configured to control an HVAC system using setpoint temperature values. The thermostat may also include a plurality of HVAC connectors configured to receive corresponding HVAC control wires, and a connection sensing module configured to determine the identities of HVAC connectors into which corresponding wires have been inserted. The processing system is further configured to select and display one or more user inquiries using the user interface based on which connectors have wires inserted, thereby enhancing and streamlining the user installation procedure.
摘要:
A thermostat may include a processing system, a plurality of HVAC connectors configured to receive a corresponding plurality of HVAC control wires, and a connection sensing circuit coupled to the plurality of HVAC connectors and configured to provide an indication to the processing system of whether a wire is inserted for each of the plurality of HVAC connectors. The processing system may be configured to receive an indication from the connection sensing circuit when an HVAC connector in the plurality of HVAC connectors has a wire inserted therein, the HVAC connector being associated with a plurality of possible HVAC functions. The processing system may also be configured to display the plurality of possible HVAC functions on a user interface, to receive input selecting one of the possible HVAC functions for the HVAC connector, and to operate the selected HVAC function through the HVAC connector.
摘要:
Systems and methods are described for controlling fan-only cooling. A first phase of a first cooling cycle may be initiated in an enclosure using an air conditioning system having a compressor and a fan that passes air over an evaporator coil. The first phase may include activation of the compressor and activation of the fan. A relative humidity may be measured within the enclosure during the first phase of the first cooling cycle. Subsequent to the first phase and in response to the relative humidity being determined to be below a threshold relative humidity, a second phase of the first cooling cycle may be initiated during which the fan is activated but the compressor is not activated.
摘要:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently calculate and display the time remaining until a control task is projected to be completed by the intelligent controller. In general, the intelligent controller employs multiple different models for the time behavior of one or more parameters or characteristics within a region or volume affected by one or more devices, systems, or other entities controlled by the intelligent controller. The intelligent controller collects data, over time, from which the models are constructed and uses the models to predict the time remaining until one or more characteristics or parameters of the region or volume reaches one or more specified values as a result of intelligent controller control of one or more devices, systems, or other entities.