摘要:
Disclosed are compositions and processes for controlling lepidopteran pests. These compositions comprise synergistic combinations of a CryIF chimeric and CryIA(c) chimeric Bacillus thuringiensis .delta.-endotoxin. These compositions have been found to exhibit excellent activity against lepidopteran pests.
摘要:
Disclosed are compositions and processes for controlling lepidopteran pests. These compositions comprise synergistic combinations of a CryIF chimeric and CryIA(c) chimeric Bacillus thuringiensis .delta.-endotoxin. These compositions have been found to exhibit excellent activity against lepidopteran pests.
摘要:
The subject invention concerns materials and methods useful in the control of pests and, particularly, plant pests. More specifically, the subject invention concerns novel genes and pesticidal toxins referred to as 86A1(b) and 52A1(b). In preferred embodiments, the subject toxins are used for controlling flea beetles of the genus Phyllotreta. Using the genes described herein, the transformation of plants can be accomplished using techniques known to those skilled in the art. In addition, the subject invention provides toxin genes optimized for expression in plants.
摘要:
The subject invention concerns materials and methods useful in the control of pests and, particularly, plant pests. More specifically, the subject invention concerns novel genes and pesticidal toxins referred to as 86A1(b) and 52A1(b). In preferred embodiments, the subject toxins are used for controlling flea beetles of the genus Phyllotreta. Using the genes described herein, the transformation of plants can be accomplished using techniques known to those skilled in the art. In addition, the subject invention provides toxin genes optimized for expression in plants.
摘要:
The subject invention concerns materials and methods useful in the control of pests and, particularly, the plant pests. More specifically, the subject invention concerns novel genes and pesticidal toxins referred to as 86A1(b) and 52A1(b). In preferred embodiments, the subject toxins are used for controlling flea beetles of the genus Phyllotreta. Using the genes described herein, the transformation of plants can be accomplished using techniques known to those skilled in the art. In addition, the subject invention provides toxin genes optimized for expression in plants.
摘要:
An improved Bacillus thuringiensis (B.t.) delta-endotoxin is created by the modification of the gene encoding the toxin. The toxicity of a B.t. toxin was improved by replacing the native protoxin segment with an alternate protoxin segment by constructing a chimeric toxin gene.
摘要:
The invention concerns novel hybrid pesticidal toxins. These toxins are expressed as the fusion protein of a chimeric gene. Specifically exemplified is a novel B.t. hybrid toxin. These novel toxins have increased toxicity against target pests. The invention also concerns a process for preparing a hybrid virus having an altered insect host range.
摘要:
The invention concerns novel hybrid pesticidal toxins. These toxins are expressed as the fusion protein of a chimeric gene. Specifically exemplified is a novel B.t. hybrid toxin. These novel toxins have increased toxicity against target pests. The invention also concerns a process for preparing a hybrid virus having an altered insect host range.
摘要:
Bacillus thuringiensis endotoxin expression in Pseudomonads can be improved by modifying the gene encoding the Bacillus thuringiensis endotoxin. Chimeric genes are created by replacing the segment of the Bacillus thuringiensis gene encoding a native protoxin with a segment encoding a different protoxin. Exemplified herein is the cryIF/cryI(b) chimera wherein the native cryIF protoxin segment has been substituted by the cryIA(b) protoxin segment, to yield improved expression of the cryIF toxin in Pseudomonads. The invention also concerns novel genes and plasmids.
摘要:
Bacillus thuringiensis endotoxin expression in Pseudomonads can be improved by modifying the gene encoding the Bacillus thuringiensis endotoxin. Chimeric genes are created by replacing the segment of the Bacillus thuringiensis gene encoding a native protoxin with a segment encoding a different protoxin. Exemplified herein is the cryIF/cryI(b) chimera wherein the native cryIF protoxin segment has been substituted by the cryIA(b) protoxin segment, to yield improved expression of the cryIF toxin in Pseudomonads. The invention also concerns novel genes and plasmids.