摘要:
A method optimizes routing in a multiprocessor computer system by defining two types of virtual channels having virtual channel buffers for storing messages communicated between processing element nodes in the multiprocessor computer system. A dateline is associated to each type of virtual channel, and messages are restrained from crossing a dateline on its associated type of virtual channel to avoid deadlock. A cost function is defined which is correlated to imbalances in the utilization of the two types of virtual channels. The unrestrained messages are allocated between the two types of virtual channels to minimize the cost function by defining an initial virtual channel allocation, randomly modifying the virtual channel allocation, and accepting the random modification if the modification decreases the cost function, else accepting the modification based on a probability that slowly decreases during the allocating step.
摘要:
A routing mechanism includes two acyclic non-adaptive virtual channels having two types of virtual channel buffers to store packets along deterministic virtual paths between nodes in an n-dimensional networked system, and an adaptive virtual channel having a third type of virtual channel buffer to store the packets along non-deterministic virtual paths between the nodes. The packets are routed between the nodes along either selected portions of the deterministic virtual paths or selected portions of the non-deterministic virtual paths based on routing information such that a packet is never routed on a selected portion of one of the non-deterministic virtual paths unless the third type virtual channel buffer associated with the selected portion of the one non-deterministic virtual path has sufficient space available to store the entire packet.
摘要:
A system and method of determining a master node in a computer system having a plurality of nodes includes establishing a hierarchy of master nodes from the plurality of nodes, wherein the master node synchronizes the plurality of nodes in the computer system with a clock value and determining the master node from the hierarchy of master nodes. A system and method of synchronizing a plurality of nodes in a computer system includes determining a master node from the plurality of nodes, sending a clock value from the master node to neighbor nodes of the master node, synchronizing a node clock in each node receiving the clock value if a predetermined period of time has elapsed in each receiving node, distributing a node clock value from each synchronized node to neighbor nodes of the synchronized node, and repeating synchronizing and distributing, wherein synchronizing a node clock in each node receiving the clock value includes each node receiving the node clock value.
摘要:
A method and apparatus for controlling access by a set of accessing nodes to memory of a home node (in a multimode computer system) determines that each node in the set of nodes has accessed the memory, and forwards a completion message to each node in the set of nodes after it is determined that each node has accessed the memory. The completion message has data indicating that each node in the set of nodes has accessed the memory of the home node.
摘要:
A multiprocessor computer system comprises a plurality of processing element nodes and an interconnect network interconnecting the plurality of processing element nodes. An interface circuit is associated with each one of the plurality of processing element nodes. The interface circuit has a lookup table having n-number of routing entries for a given destination node. Each one of the n-number of routing entries associated with a different class of traffic. The network traffic is routed according to the class.
摘要:
A node controller (12) in a computer system (10) includes a processor interface unit (24), a memory directory interface unit (22), and a local block unit (28). In response to a memory location in a memory (17) associated with the memory directory interface unit (22) being altered, the processor interface unit (24) generates an invalidation request for transfer to the memory directory interface unit (22). The memory directory interface unit (22) provides the invalidation request and identities of processors (16) affected by the invalidation request to the local block unit (28). The local block unit (28) determines which ones of the identified processors (16) are present in the computer system (10) and generates an invalidation message for each present processor (16) for transfer thereto. Each of the present processors (16) process their invalidation message and generate an acknowledgment message for transfer to the processor interface unit (24) that generated the invalidation request. The local block unit (28) determines which ones of the identified processors (16) are not present in the computer system (10) and generates an acknowledgment message for each non-existent processor (16). Each acknowledgment message is transferred to the processor interface unit (24) which generated the invalidation request.
摘要:
A node controller (12) in a computer system (10) includes a processor interface unit (24), a memory directory interface unit (22), and a local block unit (28). In response to a memory location in a memory (17) associated with the memory directory interface unit (22) being altered, the processor interface unit (24) generates an invalidation request for transfer to the memory directory interface unit (22). The memory directory interface unit (22) provides the invalidation request and identities of processors (16) affected by the invalidation request to the local block unit (28). The local block unit (28) determines which ones of the identified processors (16) are present in the computer system (10) and generates an invalidation message for each present processor (16) for transfer thereto. Each of the present processors (16) process their invalidation message and generate an acknowledgment message for transfer to the processor interface unit (24) that generated the invalidation request. The local block unit (28) determines which ones of the identified processors (16) are not present in the computer system (10) and generates an acknowledgment message for each non-existent processor (16). Each acknowledgment message is transferred to the processor interface unit (24) which generated the invalidation request.
摘要:
A system and method for interconnecting a plurality of processing element nodes within a scalable multiprocessor system is provided. Each processing element node includes at least one processor and memory. A scalable interconnect network includes physical communication links interconnecting the processing element nodes in a cluster. A first set of routers in the scalable interconnect network route messages between the plurality of processing element nodes. One or more metarouters in the scalable interconnect network route messages between the first set of routers so that each one of the routers in a first cluster is connected to all other clusters through one or more metarouters.
摘要:
Processing transaction requests in a shared memory multi-processor computer network is described. A transaction request is received at a servicing agent from a requesting agent. The transaction request includes a request priority associated with a transaction urgency generated by the requesting agent. The servicing agent provides an assigned priority to the transaction request based on the request priority, and then compares the assigned priority to an existing service level at the servicing agent to determine whether to complete or reject the transaction request. A reply message from the servicing agent to the requesting agent is generated to indicate whether the transaction request was completed or rejected, and to provide reply fairness state data for rejected transaction requests.
摘要:
A system and method for interconnecting a plurality of processing element nodes within a scalable multiprocessor system is provided. Each processing element node includes at least one processor and memory. A scalable interconnect network includes physical communication links interconnecting the processing element nodes in a cluster. A first set of routers in the scalable interconnect network route messages between the plurality of processing element nodes. One or more metarouters in the scalable interconnect network route messages between the first set of routers so that each one of the routers in a first cluster is connected to all other clusters through one or more metarouters.