摘要:
An adaptive RACH operation is proposed for machine-type communications (MTC) in a 3GPP wireless network. The adaptive RACH operation is based on context information to reduce RACH collision probability, to control network overload, and to enhance system performance. The context information includes device related information and network related information. Device related information includes device type and service or application type. Network related information includes network load information and historical statistics information. Based on the context information, an MTC device adjusts various network access and RACH parameters by applying adaptive RACH operation in different levels. For example, in the application level and the network level, the MTC device adjusts its access probability or RACH backoff time for RACH access. In the radio access network (RAN) level, the MTC device adjusts its access probability or RACH backoff time, or transmits RACH preambles using adjusted RACH radio resources and preambles.
摘要:
Enhanced paging mechanisms are proposed for Machine Type Communication (MTC) devices in 3GPP networks. First, adaptive paging is proposed to adaptively allocate extra paging occasions for MTC devices with no extra procedure or power consumption on normal UEs. Second, group paging is proposed to simultaneously page a plurality of MTC devices with one paging. Group paging is controlled in different levels for optimized signaling and easier management. In one embodiment, group broadcasting and group release are used. Third, paging with response policy is proposed to pre-define or dynamically configure paging response policies for MTC devices.
摘要:
Enhanced paging mechanisms are proposed for Machine Type Communication (MTC) devices in 3GPP networks. First, adaptive paging is proposed to adaptively allocate extra paging occasions for MTC devices with no extra procedure or power consumption on normal UEs. Second, group paging is proposed to simultaneously page a plurality of MTC devices with one paging. Group paging is controlled in different levels for optimized signaling and easier management. In one embodiment, group broadcasting and group release are used. Third, paging with response policy is proposed to pre-define or dynamically configure paging response policies for MTC devices.
摘要:
Network-assisted solutions are provided to maintain MBMS service continuity, to provide efficient localized MBMS service, and to achieve intelligent MBMS service management. In a first embodiment, a source eNB acquires MBMS information of neighbor cells and acquires MBMS reception/interest status information of a UE. Based on the acquired information, the source eNB makes handover decision for the UE to handover to a selected target cell and maintain MBMS service continuity. In a second embodiment, location information of a localized MBMS service is provided to a UE. Based on the location information, the UE is able to receive the localized MBMS service with minimum power consumption. In a third embodiment, an MBMS counting procedure is provided for an eNB to count the number of UEs that are receiving or are interested in MBMS service(s). Based on the counting result, the MBMS service(s) can be enabled or disabled accordingly.
摘要:
A method for contention-based (CB) uplink transmission in a wireless communication network is provided. A base station (eNB) first transmits CB configuration information and CB grant to a user equipment (UE). The UE derives a plurality of transmission opportunities from the uplink CB grant and in response transmits uplink CB data via one of the transmission opportunities. The UE then receives an acknowledgment from the serving base station. If the uplink CB data is non-decodable by the eNB due to multiple contention UEs, then the UE retransmits the uplink data in response to a negative acknowledgment. In one novel aspect, the uplink transmission radio resource carriers both the uplink CB data and UE-selected signature information. In one embodiment, the UE-selected signature information is transmitted via pilot tones. By eliminating a separate phase of contention resolution, the overall latency of CB transmission is reduced and transmission efficiency is improved.
摘要:
A power control method to mitigate in-device coexistence (IDC) interference is provided. A wireless communication device (UE) is equipped with a first LTE radio module and a second co-located WiFi/BT/GSNN radio module. Upon detecting coexistence or IDC interference, the UE applies power control method to mitigate the interference. In a first embodiment, the LTE radio module adjusts its power parameters locally without informing the serving eNB. In a second embodiment, the LTE radio module adjusts its power parameters and implicit informs the eNB through existing PHR reporting. In a third embodiment, the LTE radio module changes its power or power class and explicitly informs the eNB through UE capability or new RRC message or MAC CE. Power control can be used as a low cost and lightweight solution before applying other heavyweight solutions that either require more resource or control overhead, or have higher impact on throughput.
摘要:
A method for contention-based (CB) uplink transmission in a wireless communication network is provided. A base station (eNB) first transmits CB configuration information and CB grant to a user equipment (UE). The UE derives a plurality of transmission opportunities from the uplink CB grant and in response transmits uplink CB data via one of the transmission opportunities. The UE then receives an acknowledgment from the serving base station. If the uplink CB data is non-decodable by the eNB due to multiple contention UEs, then the UE retransmits the uplink data in response to a negative acknowledgment. In one novel aspect, the uplink transmission radio resource carriers both the uplink CB data and UE-selected signature information. In one embodiment, the UE-selected signature information is transmitted via pilot tones. By eliminating a separate phase of contention resolution, the overall latency of CB transmission is reduced and transmission efficiency is improved.
摘要:
A method of MDT information logging and problem event reporting is provided. The method supports provisioning of reference events to enable correlation of system time and the problem occurrence. In one embodiment, a problem event report includes time information directly or indirectly related to a reference event. A method of handling battery condition is also provided. The method supports autonomously suspending or resuming OAM activities in MDT based on predefined battery condition. In one embodiment, a testable battery condition handling is designed for MDT logging.
摘要:
A method of providing Local IP Access (LIPA) indication is proposed. In one novel aspect, an enhanced cell selection method is proposed using LIPA capability information. Based on LIPA capability related information, a UE is able to prioritize LIPA-capable cells and establish a corresponding packet data network (PDN) connection accordingly. In one embodiment, LIPA information is informed to the UE via Non Access Stratum (NAS) signaling. The UE stores LIPA capability information when receiving a NAS message from a mobility management entity (MME). Later on, when the UE performs cell selection or reselection in idle mode, the UE can use the stored LIPA capability information to prioritize LIPA-capable cells.
摘要:
A method of providing Local IP Access (LIPA) indication is proposed. In one novel aspect, an enhanced cell selection method is proposed using LIPA capability information. Based on LIPA capability related information, a UE is able to prioritize LIPA-capable cells and establish a corresponding packet data network (PDN) connection accordingly. In one embodiment, LIPA information is informed to the UE via Non Access Stratum (NAS) signaling. The UE stores LIPA capability information when receiving a NAS message from a mobility management entity (MME). Later on, when the UE performs cell selection or reselection in idle mode, the UE can use the stored LIPA capability information to prioritize LIPA-capable cells.