摘要:
A sliding bearing, e.g. journal bearing, including at least two bearing elements the bearing surfaces of which are slidably supported with respect to each other. At least one of the surfaces is provided with a first type of cavity which may comprise a lubricating substance, the first type of cavity being defined by a specific range of geometric properties. At least one surface is provided with at least a second type of cavity which may comprise a lubricating surface, the second type of cavity being defined by geometric properties which are different from the geometric properties of the first type of cavity.
摘要:
A sliding bearing, such as a journal bearing, includes at least two bearing elements, the bearing surfaces of which are slidably supported with respect to each other. At least one of the surfaces is provided with a first type of cavity which may comprise a lubricating substance, the first type of cavity being defined by a specific range of geometric properties. At least one surface is provided with at least a second type of cavity which may comprise a lubricating surface, the second type of cavity being defined by geometric properties which are different from the geometric properties of the first type of cavity.
摘要:
The invention relates to the manufacture of high purity germanium for the manufacture of e.g. infra red optics, radiation detectors and electronic devices. GeCl4 is converted to Ge metal by contacting gaseous GeCl4 with a liquid metal M containing one of Zn, Na and Mg, thereby obtaining a Ge-bearing alloy and a metal M chloride, which is removed by evaporation or skimming. The Ge-bearing alloy is then purified at a temperature above the boiling point of metal M. This process does not require complicated technologies and preserves the high purity of the GeCl4 in the final Ge metal, as the only reactant is metal M, which can be obtained in very high purity grades and continuously recycled.
摘要:
This invention concerns a new filler and floatability material as well as its manufacturing process.For instance, this new material can be used as a filler and floatability material (A) which separates tubes or cables (1,2) in a tubular unit that includes an external sheath (B) surrounding a harness of tubes or cables (1,2).In view of its make-up this material also participates in the thermal insulation of said tubes.The invention concerns also such tubular units which incorporate the new material.
摘要:
The immersed surface area of one of the electrodes in a conventional electro-chemical bath is accurately determined, so that the bath may be operated at an optimium current density, to obtain high quality electro-plating or electro-polishing. The current density is measured as a certain amount of current over the immersed area of the electrode. For any given area, the current density may be varied by varying the current flow.The potential between the bath and the electrode of interest is measured when no current is being conducted through the bath. A short pulse of current is then passed through the bath from one electrode to the other; and immediately thereafter the potential between the bath and the electrode of interest is again measured. These two potentials are then compared, and the potential difference is used to determine the immersed surface area of the electrode of interest according to a mathematical relationship corresponding to such electro-chemical baths. The immersed surface area of the electrode of interest can also be determined by varying the pulse current amplitude and frequency to obtain a certain predetermined difference between the potential values, measured as described above. The pulse current amplitude and frequency are then used to determine the immersed surface area of the particular electrode according to another mathematical relationship corresponding to such electro-chemical baths.
摘要:
The invention relates to the manufacture of high purity silicon as a base material for the production of e.g. crystalline silicon solar cells. SiCU is converted to Si metal by contacting gaseous SiCU with liquid Zn, thereby obtaining a Si-bearing alloy and Zn-chloride, which is separated. The Si-bearing alloy is then purified at a temperature above the boiling point of Zn. This process does not require complicated technologies and preserves the high purity of the SiCU towards the end product, as the only reactant is Zn, which can be obtained in very high purity grades and continuously recycled.
摘要:
The invention concerns a radiation source, comprising an anode (2), a cathode (3), an electric discharge gap (4) between the anode (2) and the cathode (3) and a gas input conduit (30) in the discharge gap (4). The gas input conduit (30) is electrically connected to the anode and the cathode. The invention is characterized in that the gas input conduit (30) is supplied with gas by a gas supply conduit (32), designed to form between its portion (42) connected to the gas input conduit (30) and another of its portions connected to a fixed potential, an electric impedance such that it counters the generation of electric discharges inside the gas input conduit (30).
摘要:
Process for the production of ZnCl2 from a Zn bearing primary and/or secondary material comprising the steps of reacting the Zn bearing material with a chlorinating agent such as Cl2 to convert metals into chlorides and vaporising the volatile components of the reaction product at a temperature between the melting point of said reaction product and the boiling point of ZnCl2, thereby recovering a Zn rich chlorinated melt, and thereafter distilling ZnCl2 from this Zn rich chlorinated melt, thereby recovering purified ZnCl2 and a Zn-depleted chlorinated melt.
摘要:
The invention relates to the manufacture of high purity germanium for the manufacture of e.g. infra red optics, radiation detectors and electronic devices. GeCl4 is converted to Ge metal by contacting gaseous GeCl4 with a liquid metal M containing one of Zn, Na and Mg, thereby obtaining a Ge-bearing alloy and a metal M chloride, which is removed by evaporation or skimming. The Ge-bearing alloy is then purified at a temperature above the boiling point of metal M. This process does not require complicated technologies and preserves the high purity of the GeCl4 in the final Ge metal, as the only reactant is metal M, which can be obtained in very high purity grades and continuously recycled.