Abstract:
Disclose herein is a method of measuring pressures in a coronary sinus. In one embodiment, the method includes: introducing a distal portion of a lead or tool into the coronary sinus, wherein the distal portion includes first and second pressure sensors and at least one selectably expandable member; expanding the at least one expandable member such that the first and second sensors are isolated from each other within the coronary sinus; and taking pressure measurements with the first and second sensors when isolated from each other.
Abstract:
An ablation catheter employing a continuous or nearly continuous flexible electrode arrangement. In one implementation, the flexible electrode include at least one electrode defining a saw tooth pattern. In another implementation, the flexible electrode is arranged in an interlaced pattern. Generally, the flexible electrodes are configured to adapt to the change in shape of the portion of the catheter that the electrode is connected with. Moreover, the flexible electrodes are arranged to provide a continuous or nearly continuous lesion of the target tissue. In some implementations, the flexible electrode may be connected with the catheter in a biased configuration, and as such may assist in changing the shape of a curve in the catheter.
Abstract:
The invention provides a deflectable catheter capable of forming many variable radius spiral forms from a single, flexible, distal end section. In one aspect, the catheter employs a variable radius control wire to extend or deform a pre-formed loop structure into a three dimensional spiral-like form or geometry. The ability of a single catheter to create the multitude of shapes and sizes possible allows users to access a greater number of anatomical areas without changing the catheter during a procedure or treatment. In another aspect, the invention encompasses methods of producing deflectable variable radius catheters, where two or more regions of the catheter having common control wires are fused or formed onto one another.
Abstract:
An ablation catheter employing one or more manifold arrangements to convey a conductive fluid medium to a target tissue. The manifold includes at least one inlet port in fluid communication with a fluid supply lumen running along at least a portion of the catheter. The inlet port or ports are in fluid communication with a larger outlet port. The outlet ports provide an outlet for the fluid to flow out of the catheter and against the target tissue. As such, the combination of at least the inlet port with the outlet port provides a flow path for fluid within the fluid lumen to flow through the manifold and to outside of the catheter. An electrode is arranged in the flow path of fluid within or adjacent the manifolds. As such, fluid may be energized and conduct ablation energy to the target tissue to ablate the tissue.
Abstract:
A sensing and ablation electrode includes bifurcated sensing limbs separated by an ablation web. The electrode is disposed on the distal end of a catheter. The sensing limbs each support an array of sensors that are individually wired for mapping and post ablation efficacy testing. The web includes a pair of pliable membranes that define a lumen and are adapted to collapse the cross-section of the electrode. One membrane defines a plurality of apertures for dispersing a conductive fluid medium as a virtual electrode. The sensors and the apertures all lie within substantially the same plane.
Abstract:
A mechanical heart valve for implantation in a heart of a patient includes an orifice body having an outer circumference and defining a lumen for blood flow therethrough. At least one leaflet carried in the lumen of the orifice body is movable between an open position, allowing flow through the lumen, and a closed position blocking flow through the lumen. A flange ring around the outer circumference of the orifice body includes a plurality of suture holes defined therein. The suture holes are adapted for receiving a suture and thereby attaching the heart valve to tissue of the heart.
Abstract:
An artificial heart valve prosthesis for use in a heart includes an orifice defining a lumen therethrough for blood flow. An occluder is carried in the orifice and is movable between an open position which allows blood flow through the lumen and a closed position in which flow through the lumen is blocked. A suture cuff coupled to the orifice extends around an outer circumference of the orifice and is used for attaching the heart valve to a heart tissue annulus using sutures. The sutures are knotted proximate the suture cuff to secure the cuff to the annulus. A suture guard is coupled to the suture cuff and is movable between an open position in which the suture knot is exposed and a closed position in which the suture, suture knot and suture cuff are covered.
Abstract:
A guidewire for a medical device is disclosed. The guidewire includes an elongate body, a proximal connector assembly, a corewire, and a sensor assembly. The body has an annular wall that defines an interior lumen. The proximal connector assembly is coupled to the body and is configured for connection to a medical positioning system. The corewire extends through the lumen. The sensor assembly located on a distal end of the corewire is electrically connected to the proximal connector assembly. The sensor assembly is configured to generate an electrical signal indicative of a position of the sensor assembly in a reference coordinate system defined in the medical positioning system. The body includes a helical cutout extending over a predetermined length of the body. The helical cutout is configured to increase the flexibility over the predetermined length of the body.
Abstract:
Systems, devices and methods of monitoring blood flow velocity are disclosed herein. For example, one method of monitoring blood flow velocity includes: locating a blood flow velocity sensor near the ostium in the coronary sinus; and sensing towards a portion of the aorta. A second example method includes: locating a blood flow velocity sensor in a vein; and sensing towards an adjacent artery. A third example method includes: locating a blood flow velocity sensor near the tricuspid valve; and sensing towards a tricuspid valve annulus. A fourth example method includes: locating a blood flow velocity sensor right ventricular outflow tract; and sensing towards a portion of the aorta. A fifth example method includes: locating a blood flow velocity sensor in the great cardiac vein; and sensing towards a left anterior descending artery. A sixth example method includes: locating a blood flow velocity sensor in the right atrial appendage; and sensing towards a portion of the aorta.
Abstract:
Disclosed herein is a magnetic navigation enabled tool configured for the delivery of an implantable medical lead. The tool includes a tubular body, a sensor and a conductor. The tubular body includes a distal end, a proximal end, an inner layer including an outer circumferential surface, a lumen inward of the inner layer, and an outer layer over the outer circumferential surface of the inner layer. The sensor is on the tubular body near the distal end. The conductor extends from the sensor coil towards the proximal end imbedded in the inner layer.