摘要:
Disclosed is a display driving apparatus. The display driving apparatus comprises: a current DAC generating a data current; a data line connected to a pixel circuit requiring data writing on a matrix array of a display panel; an adjacent data line located adjacent to the data line; a current mirror feedbacking an excessive charging current generating due to parasitic capacitance of the adjacent data line as a charging current for charging parasitic capacitance of the data line; a current output unit connected to the current mirror and including a first driving transistor unit for driving the data line, and a second driving transistor unit for driving the adjacent data line; a source follower driving the current output unit according to an output node voltage of the current DAC; and a first constant current source discharging parasitic capacitance excessively charged in the data line and the adjacent data line.
摘要:
A digital-to-analog converter includes a voltage-to-current converter, a current-mode digital-to-analog converter and an operational amplifier. The voltage-to-current converter generates a first current signal, and the current-mode digital-to-analog converter generates a second current signal. The operational amplifier modulates a drain current in response to the second current signal and generates an output signal having an offset.
摘要:
A digital-to-analog converter includes a voltage-to-current converter, a current-mode digital-to-analog converter and an operational amplifier. The voltage-to-current converter generates a first current signal, and the current-mode digital-to-analog converter generates a second current signal. The operational amplifier modulates a drain current in response to the second current signal and generates an output signal having an offset.
摘要:
The present invention relates to a system and method for an abnormal waveform in a power distribution system that quickly transmits abnormal waveform-related data of a large size by changing a protocol according to data size. The system for detecting an abnormal power quality waveform comprises: a plurality of RTUs for measuring abnormal waveform when a waveform measuring signal received, and transmitting an abnormal waveform using a protocol set according to the size of the abnormal waveform; an FEP for transmitting the waveform measuring signal to an RTU installed in a failure section, and receiving and storing the abnormal waveform from the RTU; a main server for transmitting the waveform measuring signal through the FEP to the RTU installed in the failure section, performing controlling to measure the abnormal waveform generated in the failure section, and receiving and displaying the abnormal waveform according to the waveform measuring signal.
摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
Provided are an apparatus, related method of storing data, and a computer readable recording medium. The apparatus includes a source/destination memory, a non-volatile back-up memory, and a transaction management module. The transaction management module is adapted to erase a plurality of memory location in backup memory upon initialization of the apparatus or following a primary data transaction.
摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
Provided are an apparatus and method for minimizing a distribution loss which reconstructs the system construction of a distribution system in consideration of section load characteristics of mutually different distribution system. The apparatus for minimizing a distribution loss which determines a loss calculation period for detecting a loss minimization time point using mutually different distribution systems, calculates loss values of mutually different distribution systems set according to each time point of the loss calculation period, and calculates a total loss value, and selects the mutually different distribution systems one by one during the loss calculation period, and calculates a loss value for specific systems of each distribution system in consideration of a change of a section load in each selected distribution system, determines a loss minimization time point using the specific system loss value of each distribution system and the total loss value.
摘要:
A method of forming a photomask includes providing a layout of design patterns, setting an optical proximity correction (OPC) with respect to the layout of design patterns, and forming a layout of correction patterns with respect to the layout of design patterns by using the set OPC. The method also includes collecting verification data about the layout of correction patterns by using a layout of contour patterns based on the layout of correction patterns, and verifying whether the layout of design patterns and the layout of correction patterns are substantially identical to each other by using the verification data.
摘要:
Provided are a novel distribution automation system and its voltage control method, which can supply a stable voltage to a user by properly adjusting the settings of a control device so as to compensate for reactive power at each load terminal. The voltage control method includes: a first step of modeling a distribution system in the form of a distribution load based on constants of four terminals according to the connection type of each node and a distribution line, which constitute the distribution system; a second step of determining a formula for estimating the magnitude of a voltage at a node from a current value of an adjacent node; a third step of determining an objective function including the magnitude of the voltage, calculated through the formula determined in the second step, and a control variable for controlling the magnitude of the voltage; and a fourth step of calculating a value of the control variable to allow the determined objective function to have a minimum value and applying the calculated value to each voltage control device provided in the distribution system.