摘要:
In one embodiment, a processor comprises a coherence trap unit and a trap logic coupled to the coherence trap unit. The coherence trap unit is also coupled to receive data accessed in response to the processor executing a memory operation. The coherence trap unit is configured to detect that the data matches a designated value indicating that a coherence trap is to be initiated to coherently perform the memory operation. The trap logic is configured to trap to a designated software routine responsive to the coherence trap unit detecting the designated value. In some embodiments, a cache tag in a cache may track whether or not the corresponding cache line has the designated value, and the cache tag may be used to trigger a trap in response to an access to the corresponding cache line.
摘要:
In one embodiment, a processor comprises a coherence trap unit and a trap logic coupled to the coherence trap unit. The coherence trap unit is also coupled to receive data accessed in response to the processor executing a memory operation. The coherence trap unit is configured to detect that the data matches a designated value indicating that a coherence trap is to be initiated to coherently perform the memory operation. The trap logic is configured to trap to a designated software routine responsive to the coherence trap unit detecting the designated value. In some embodiments, a cache tag in a cache may track whether or not the corresponding cache line has the designated value, and the cache tag may be used to trigger a trap in response to an access to the corresponding cache line.
摘要:
Embodiments of the present invention implement virtual transactional memory using cache line marking. The system starts by executing a starvation-avoiding transaction for a thread. While executing the starvation-avoiding transaction, the system places starvation-avoiding load-marks on cache lines which are loaded from and places starvation-avoiding store-marks on cache lines which are stored to. Next, while swapping a page out of a memory and to a disk during the starvation-avoiding transaction, the system determines if one or more cache lines in the page have a starvation-avoiding load-mark or a starvation-avoiding store-mark. If so, upon swapping the page into the memory from the disk, the system places a starvation-avoiding load-mark on each cache line that had a starvation-avoiding load-mark and places a starvation-avoiding store-mark on each cache line that had a starvation-avoiding store-mark.
摘要:
Embodiments of the present invention implement virtual transactional memory using cache line marking. The system starts by executing a starvation-avoiding transaction for a thread. While executing the starvation-avoiding transaction, the system places starvation-avoiding load-marks on cache lines which are loaded from and places starvation-avoiding store-marks on cache lines which are stored to. Next, while swapping a page out of a memory and to a disk during the starvation-avoiding transaction, the system determines if one or more cache lines in the page have a starvation-avoiding load-mark or a starvation-avoiding store-mark. If so, upon swapping the page into the memory from the disk, the system places a starvation-avoiding load-mark on each cache line that had a starvation-avoiding load-mark and places a starvation-avoiding store-mark on each cache line that had a starvation-avoiding store-mark.
摘要:
Embodiments of the present invention provide a system that dynamically reconfigures memory. During operation, the system determines that a virtual memory page is to be reconfigured from an original virtual-address-to-physical-address mapping to a new virtual-address-to-physical-address mapping. The system then determines a new real address mapping for a set of virtual addresses in the virtual memory page by selecting a range of real addresses for the virtual addresses that are arranged according to the new virtual-address-to-physical-address mapping. Next, the system temporarily disables accesses to the virtual memory page. Then, the system copies data from real address locations indicated by the original virtual-address-to-physical-address mapping to real address locations indicated by the new virtual-address-to-physical-address mapping. Next, the system updates the real-address-to-physical-address mapping for the page, and re-enables accesses to the virtual memory page.
摘要:
One embodiment of the present invention provides a system that facilitates load reordering through cacheline marking. During operation, the system receives a load operation to be executed. Next, the system determines whether a cacheline for the load has been load-marked by a thread which is performing the load. If so, the system performs the load. Otherwise, the system obtains the cacheline and subsequently attempts to load-mark the cacheline. If the cacheline is successfully load-marked, the system performs the load.
摘要:
One embodiment of the present invention provides a store queue that applies the stores to a memory subsystem in program order. This store queue includes a content-addressable memory (CAM), which holds pending stores and facilitates looking up stores based on addresses for the stores, wherein the CAM does not keep track of program order between stores to different addresses. The store queue also includes a program-order queue which keeps track of program order between the stores in the CAM and thereby facilitates applying the stores to the memory subsystem in program order. In a variation on this embodiment, the CAM is a priority CAM which holds separate copies of multiple stores with identical addresses, and when a lookup based on an address matches multiple stores, returns the youngest matching store.
摘要:
Embodiments of the present invention provide a system that handles load-marked and store-marked cache lines. Upon asserting a load-mark or a store-mark for a cache line during a given phase of operation, the system adds an entry to a private buffer and in doing so uses an address of the cache line as a key for the entry in the private buffer. The system also updates the entry in the private buffer with information about the load-mark or store-mark and uses pointers for the entry and for the last entry added to the private buffer to add the entry to a sequence of private buffer entries placed during the phase of operation. The system then uses the entries in the private buffer to remove the load-marks and store-marks from cache lines when the phase of operation is completed.
摘要:
Embodiments of the present invention provide a system that buffers stores on a processor that supports speculative execution. The system starts by buffering a store into an entry in the store queue during a speculative execution mode. If an entry for the store does not already exist in the store queue, the system writes the store into an available entry in the store queue and updates a byte mask for the entry. Otherwise, if an entry for the store already exists in the store queue, the system merges the store into the existing entry in the store queue and updates the byte mask for the entry to include information about the newly merged store. The system then forwards the data from the store queue to subsequent dependent loads.
摘要:
One embodiment of the present invention provides a store queue that applies the stores to a memory subsystem in program order. This store queue includes a content-addressable memory (CAM), which holds pending stores and facilitates looking up stores based on addresses for the stores, wherein the CAM does not keep track of program order between stores to different addresses. The store queue also includes a program-order queue which keeps track of program order between the stores in the CAM and thereby facilitates applying the stores to the memory subsystem in program order. In a variation on this embodiment, the CAM is a priority CAM which holds separate copies of multiple stores with identical addresses, and when a lookup based on an address matches multiple stores, returns the youngest matching store.