Abstract:
Techniques include receiving a design of an integrated computational element (ICE) including specification of a substrate and a plurality of layers, their respective target thicknesses and complex refractive indices, complex refractive indices of adjacent layers being different from each other, and a notional ICE fabricated in accordance with the ICE design being related to a characteristic of a sample; forming at least some of the layers of a plurality of ICEs in accordance with the ICE design using a deposition source, where the layers of the ICEs being formed are supported on a support that is periodically moved relative to the deposition source during the forming; monitoring characteristics of the layers of the ICEs during the forming, the monitoring of the characteristics being performed using a timing of the periodic motion of the support relative to the deposition source; and adjusting the forming based on results of the monitoring.
Abstract:
A method for designing a tool string for use in a wellbore includes receiving a merit function, and determining, with a computing system and based on the merit function, a tool string design for a tool string. The merit function comprises one or more defined objectives for performing a process in a wellbore. The tool string design comprises an indication of one or more tools used to form a tool string for performing the process in the wellbore, and the tool string design satisfies the merit function.
Abstract:
A method of coating an interior surface of a housing defining a volume includes partitioning the volume into a first zone and a second zone, the first zone isolated from fluid communication with the second zone; introducing one or more reactant gases, plasma, ions, or a combination thereof to the first zone and the second zone; and forming one or more coating layers on all or a portion of the interior surface within the first and second zones via reaction of the reactant gases, the plasma, or the combination thereof. A device for coating an interior surface of a housing is also provided.
Abstract:
A coating system for coating, with a surface coating process, an interior surface of a housing defining an interior volume, having: a first closure and a second closure to sealingly engage with the housing; one or more first flow lines and second flow lines fluidically coupled to the first and second closure, respectively; a pressurized cell comprising a pressurized gas comprising at least one reactant and at a pressure of greater than a pressure within the housing, wherein the pressurized cell is fluidically coupled to a pressurized cell line comprising one of the first flow lines or second flow lines; and a controller in electronic communication with the pressurized cell and configured to control injection of a pulse of the pressurized gas into a flow of inert gas in the pressurized cell line, whereby the pulse is introduced into the interior volume, coating the interior surface with a coating layer.
Abstract:
A device for coating an interior surface of a housing defining a volume comprising a plurality of reactant gas sources including reactant gases for one or more surface coating processes; first and second closures to sealingly engage with an inlet and outlet of the volume of the housing to provide an enclosed volume; a delivery line fluidically coupled to the first closure and the plurality of reactant gas sources to deliver the reactant gases to the enclosed volume; and an output line fluidically coupled to the second closure to remove one or more reactant gases, byproduct gases, or both from the enclosed volume. A method for coating an interior surface of a housing is also provided.
Abstract:
An optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation to optically interact with a substance and an integrated computational element (ICE) core. The ICE core includes a substrate, and a first plurality of thin films alternatingly deposited on the substrate with a second plurality of thin films via a thin film deposition process, wherein the first plurality of thin films is made of a high refractive index material and the second plurality of thin films is made of low refractive index material. A stress relief layer is deposited on the substrate via the thin film deposition process and interposes the substrate and a first layer of the first plurality of thin films. A detector is positioned to receive modified electromagnetic radiation that has optically interacted with the substance and the ICE core and generate an output signal indicative of the characteristic of the substance.
Abstract:
Systems and methods are disclosed for improving optical spectrum fidelity of an integrated computational element fabricated on a substrate. The integrated computational element is configured, upon completion, to process an optical spectrum representing a chemical constituent of a production fluid from a wellbore. The systems and methods measure in situ a thickness, a complex index of refraction, or both of a film formed during fabrication to generate a predicted optical spectrum. The predicted optical spectrum is compared to a target optical spectrum. Revisions to a design of the integrated computational element are conducted in situ to improve optical spectrum fidelity relative to the target optical spectrum. Other systems and methods are presented.
Abstract:
A coating system for coating an interior surface of a housing comprising: first and second closures engaging first and second ends, respectively, of the housing to provide an enclosed volume; first and second flow lines coupled to the first and second closures, respectively, the first flow line and/or the second flow line connected to an inert gas source; a reactant gas source(s) comprising a reactant gas and coupled to the first and/or second flow line; and a controller in electronic communication with the reactant gas and inert gas sources, and configured to control flow of inert gas into the enclosed volume, and counter current injection of reactant gas from the reactant gas source(s) into the enclosed volume whereby introduction of pulse(s) of the reactant gas into the enclosed volume are separated by introduction of inert gas into the enclosed volume, and coating layer(s) are deposited on the interior surface.
Abstract:
A contrast device for analysis of a wellbore fluid includes: a substrate; and a contrast agent adhered to the substrate, wherein the contrast agent is configured to respond to an analyte within the wellbore fluid thereby altering a measurable characteristic of the contrast agent. A system including the contrast device may further include an energy source and a detector to facilitate measuring the characteristic of the contrast agent.
Abstract:
A system comprising (i) thin film optical element comprising substrate and thin film stack (≥2 film layers; uniform thickness—variation of less than ±5% in any 10 mm2 stack) deposited on substrate's first side; (ii) holder comprising at least one opening; wherein holder has inner side and outer side having beveled edge extending into lip having flat side and beveled edge side; wherein beveled edge/beveled edge side of lip form angle