Method of determining nuclear fusion irradiation coordinates, device for determining nuclear fusion irradiation coordinates, and nuclear fusion device

    公开(公告)号:US09672944B2

    公开(公告)日:2017-06-06

    申请号:US14948495

    申请日:2015-11-23

    CPC classification number: G21B1/23 H05H1/22

    Abstract: An object of the present invention is to efficiently improve uniformity of energy lines to be irradiated. A method of determining nuclear fusion irradiation coordinates according to the present invention is a method of calculating irradiation coordinates when energy lines are irradiated onto a nuclear fusion target, and comprises an initial arrangement step S202 of virtually arranging electric charges Qi at initial coordinates of the number of irradiation coordinates NB on a spherical surface S0 set by using random numbers, a coordinate analysis step S203 of analyzing coordinates ri of the electric charges Qi in time series based on coulomb forces acting among the electric charges Qi by constraining the coordinates ri onto the spherical surface S0, potential evaluation steps S205 and S206 of determining a timing at which potential energies of the electric charges Qi were stabilized based on the coordinates ri, and an irradiation coordinate deriving step S207 of deriving coordinates ri at the timing at which potential energies were stabilized as irradiation coordinates of energy lines in a case where a nuclear fusion target is arranged at the center of the spherical surface S0.

    Semiconductor laser device
    5.
    发明授权

    公开(公告)号:US09882354B2

    公开(公告)日:2018-01-30

    申请号:US15124778

    申请日:2015-03-03

    Abstract: A semiconductor laser device includes: a semiconductor laser array in which a plurality of active layers that emit laser lights with a divergence angle θS (>4°) in a slow axis direction are arranged; a first optical element that reflects first partial lights by a first reflecting surface and returns the first partial lights to the active layers; and a second optical element that reflects partial mode lights of second partial lights by a second reflecting surface and returns the partial mode lights to the active layers, the first reflecting surface forms an angle equal to or greater than 2° and less than (θS/2) with a plane perpendicular to an optical axis direction of the active layers, and the second reflecting surface forms an angle greater than (−θS/2) and equal to or less than −2° with the plane perpendicular to the optical axis direction of the active layers.

Patent Agency Ranking