Abstract:
Forming memristors on imaging devices can include forming a printhead body comprising a first conductive material, forming a memory on the printhead body by performing an oxidation process to form a switching oxide material on the first conductive material, and forming a second conductive material on the switching oxide material.
Abstract:
Apparatus and methods related to negative differential resistance (NDR) are provided. An NDR device includes a spaced pair of electrodes and at least two different materials disposed there between. One of the two materials is characterized by negative thermal expansion, while the other material is characterized by positive thermal expansion. The two materials are further characterized by distinct electrical resistivities. The NDR device is characterized by a non-linear electrical resistance curve that includes a negative differential resistance range. The NDR device operates along the curve in accordance with an applied voltage across the pair of electrodes.
Abstract:
Forming memristors on imaging devices can include forming a printhead body comprising a first conductive material, forming a memory on the printhead body by performing an oxidation process to form a switching oxide material on the first conductive material, and forming a second conductive material on the switching oxide material.
Abstract:
Low energy memristors with engineered switching channel materials include: a first electrode; a second electrode; and a switching layer positioned between the first electrode and the second electrode, wherein the switching layer includes a first phase comprising an insulating matrix in which is dispersed a second phase comprising an electrically conducting compound material for forming a switching channel.
Abstract:
Apparatus and methods related to negative differential resistance (NDR) are provided. An NDR device includes a spaced pair of electrodes and at least two different materials disposed there between. One of the two materials is characterized by negative thermal expansion, while the other material is characterized by positive thermal expansion. The two materials are further characterized by distinct electrical resistivities. The NDR device is characterized by a non-linear electrical resistance curve that includes a negative differential resistance range. The NDR device operates along the curve in accordance with an applied voltage across the pair of electrodes.
Abstract:
Low energy memristors with engineered switching channel materials include: a first electrode; a second electrode; and a switching layer positioned between the first electrode and the second electrode, wherein the switching layer includes a first phase comprising an insulating matrix in which is dispersed a second phase comprising an electrically conducting compound material for forming a switching channel.
Abstract:
A memristor with dopant-compensated switching, the memristor having a bottom electrode, a top electrode, and an active region sandwiched between the bottom electrode and the top electrode. The active region is made up of an electrically insulating material and an electrically conducting material. The insulating material includes compensating dopants to partially or fully compensate for native dopants in the insulating material. Methods for making the memristor are also disclosed.
Abstract:
A memristor including a dopant source is disclosed. The structure includes an electrode, a conductive alloy including a conducting material, a dopant source material, and a dopant, and a switching layer positioned between the electrode and the conductive alloy, wherein the switching layer includes an electronically semiconducting or nominally insulating and weak ionic switching material. A method for fabricating the memristor including a dopant source is also disclosed.