Abstract:
A power supply apparatus has a first electric storage section, a second electric storage section having an excellent energy density and a poor output density compared with the first storage section, and a control section that acquires first data and second data before and after each time of transferring charge between the first and storage sections, the first data being a combination of an SOC and an OCV of the first storage section, the second data being a combination of an SOC and an OCV of the second storage section, estimates a first correlation between the SOC and the OCV of the first storage section from an aggregation of the first data including reference data, and estimates a second correlation between the SOC and the OCV of the second storage section based on a comparison between a plurality of stored data and an aggregation of the second data.
Abstract:
A power supply includes a first and second electric storage sections, a first sensor detecting a first current of charge/discharge of the first storage section, a second sensor detecting a second current of the charge/discharge of the second storage section, and a circuit module having a control section to determine a state of the first sensor, the second sensor, and/or a third sensor detecting a third current of a driving section by comparing a first current with a third current in a charge/discharge between the first storage section and the driving section, and/or a second current with the third current in a charge/discharge between the second storage section and the driving section, and by comparing the first current with the second current and the first current with the third current in the discharge of the first storage section to the second storage section and the driving section.
Abstract:
An electricity supply control apparatus includes a storing section that stores electrical energy, a supply section that supplies the electrical energy to a drive source of a vehicle or to a load external to the vehicle, a control section that controls electricity supply from the supply section to the load, and an acquisition section that acquires information regarding a current position of the vehicle, and information regarding at least one facility located in surroundings of the current position and capable of supplying the electrical energy. The control section sets one facility from out of the at least one facility as a target destination based on a position of the facility and on a quantity of the electrical energy the facility is capable of supplying, included in the information regarding the at least one facility acquired by the acquisition section.
Abstract:
The power reception apparatus includes a secondary coil which receives power in a non-contact state from a power transmission apparatus having a primary coil, while facing the power transmission apparatus, a housing which houses the secondary coil to form a space between the secondary coil and the housing, a fluid filled in the space, a sensor which is disposed in the space and detects a change in the a liquid level height of the fluid, and a detection unit which detects a breakage of the housing, based on a the change in the liquid level height detected by the sensor.
Abstract:
A selector is to choose a target facility from the at least one facility based on a supplier position and a quantity of the energy suppliable. A distance calculator is to calculate a vehicle-facility distance from a current position to a facility position of a target energy supplier. A drivable range calculator is to calculate a drivable range of a vehicle based on a quantity of energy stored in an energy storage. A determining device is to determine whether or not to permit a power supplier to supply an electrical energy to an external device based on the vehicle-facility distance and the drivable range to control electricity supply from the power supplier to the external device.
Abstract:
A power supply apparatus includes a first and second electric storage sections, a charge/discharge circuit performing charge/discharge between the first and second storage sections, and a control section controlling the charge/discharge circuit. The control section sets at least one of the first and second storage sections as a target storage section, acquires a target SOC and a target OCV which are respectively a charge rate and an open-end voltage of the target storage section, collects, by using charge transfer between the first and second storage sections, data including the target SOC and the target OCV in an order based on a collection rule determined by collected data and the target SOC, the collected data being an aggregation of the data which is collected, and estimates correlation information between an SOC and an OCV of the target storage section based on a plurality of the data.