Abstract:
In some examples, a ground obstacle detection system of an aircraft is configured to generate and display a graphical user interface (GUI) that includes a graphical representation of a detected obstacle with which the aircraft may collide during a ground operation and an indication of an area of unknown associated with the detected obstacle. Instead of, in addition to, a GUI that includes an indication of an area of unknown associated with an obstacle, in some examples, a ground obstacle detection system to generate a GUI that includes at least two windows that present different views of an aircraft. At least one of the windows may include a graphical representation of an obstacle that may not be visible in the view of another window.
Abstract:
Systems and methods for predicting and displaying targets based on height in relation to the wing, wingtip or other elements of the aircraft, such as engine nacelles. The location of ground obstacles is based on radar returns (from sensors deployed on the ownship), aircraft surveillance data, and/or an airport moving map database.
Abstract:
In some examples, aground obstacle detection system of an aircraft is configured to generate and display a graphical user interface (GUI) that includes a graphical representation of a detected obstacle with which the aircraft may collide during a ground operation and an indication of an area of unknown associated with the detected obstacle. Instead of, in addition to, a GUI that includes an indication of an area of unknown associated with an obstacle, in some examples, a ground obstacle detection system to generate a GUI that includes at least two windows that present different views of an aircraft At least one of the windows may include a graphical representation of an obstacle that may not be visible in the view of another window.
Abstract:
In some examples, a ground obstacle detection system of an aircraft is configured to generate and display a graphical user interface (GUI) that includes a graphical representation of a detected obstacle with which the aircraft may collide during a ground operation and an indication of an area of unknown associated with the detected obstacle. Instead of, in addition to, a GUI that includes an indication of an area of unknown associated with an obstacle, in some examples, a ground obstacle detection system to generate a GUI that includes at least two windows that present different views of an aircraft. At least one of the windows may include a graphical representation of an obstacle that may not be visible in the view of another window.
Abstract:
In some examples, a ground obstacle detection system of an aircraft is configured to generate and display a graphical user interface (GUI) that includes a graphical representation of a detected obstacle with which the aircraft may collide during a ground operation and an indication of an area of unknown associated with the detected obstacle. Instead of, in addition to, a GUI that includes an indication of an area of unknown associated with an obstacle, in some examples, a ground obstacle detection system to generate a GUI that includes at least two windows that present different views of an aircraft. At least one of the windows may include a graphical representation of an obstacle that may not be visible in the view of another window.
Abstract:
An apparatus and method for receiving and processing weather data and flight plan data is disclosed. The apparatus includes a first display, an input unit, and a processor. The processor is configured to receive flight plan data and weather data, and to determine, based on the weather data, which weather characteristics is located within a predetermined range of a predetermined flight altitude value. The processor is further configured to instruct the first display to display those weather data which are located within the predetermined range above and below the input flight altitude value together with the flight plan data, and to instruct the first display to additionally display at least one element of the group consisting of the elements: strategic information weather, uplink weather, weather information from external weather data provider, onboard weather radar information, notice to airmen, aeronautical information service data, terminal area forecast, air-traffic related information.
Abstract:
An apparatus and method for receiving and processing weather data and flight plan data is disclosed. The apparatus includes a first display, an input unit, and a processor. The processor is configured to receive flight plan data and weather data, and to determine, based on the weather data, which weather characteristics is located within a predetermined range of a predetermined flight altitude value. The processor is further configured to instruct the first display to display those weather data which are located within the predetermined range above and below the input flight altitude value together with the flight plan data, and to instruct the first display to additionally display at least one element of the group consisting of the elements: strategic information weather, uplink weather, weather information from external weather data provider, onboard weather radar information, notice to airmen, aeronautical information service data, terminal area forecast, air-traffic related information.
Abstract:
Systems and methods for predicting and displaying targets based on height in relation to the wing, wingtip or other elements of the aircraft, such as engine nacelles. The location of ground obstacles is based on radar returns (from sensors deployed on the ownship), aircraft surveillance data, and/or an airport moving map database.
Abstract:
Systems and methods for predicting and displaying targets based on height in relation to the wing, wingtip or other elements of the aircraft, such as engine nacelles. The location of ground obstacles is based on radar returns (from sensors deployed on the ownship), aircraft surveillance data, and/or an airport moving map database.
Abstract:
Systems and methods for displaying a datalink message log on a Forward Field-of-View display are provided. In one embodiment, an avionics system for displaying a Forward Field-of-View log of datalink messages on-board an aircraft comprises: a processor executing a Datalink Message Log Function that manages a datalink message log, the Message Log Function in communication with at least one on-board memory storage device storing Datalink Message Data; and a human machine interface (HMI) device in communication with the Message Log Function, the HMI device comprising a Forward Field-of-View Display presenting a first screen that displays a log of datalink messages from the Message Data; wherein at least one entry of the log of datalink messages is presented in the first screen in a collapsed form and at least one entry for an active datalink message is presented in the first screen in an expanded form.