Abstract:
An electronic multiplier porous glass plate used for a detector that measures ionized electrons by utilizing an electron avalanche multiplication in a gas is presented. The plate has a plurality of through holes provided on a plate-like member so as to be arranged two-dimensionally, wherein the plate-like member is formed by a photosensitive crystallized glass obtained by crystallizing a photosensitive glass, to realize a thinner glass plate and finer through holes.
Abstract:
There is provided that a substrate comprising a glass substrate 2 constituted by a glass including a silicon oxide. The glass substrate has a through-hole 3 communicating with a front surface and a rear surface of the glass substrate, and filled with a metal material. The substrate is realized by forming an anchor part by selectively etching a silicon oxide on a sidewall surrounding an inside of said through-hole 3 before filling the metal material and by filling the inside of said through-hole 3 with the metal material after forming the anchor part.
Abstract:
There is provided a glass substrate for electronic amplification having through holes formed on a plate-like glass member and used for causing an electron avalanche in the through holes, wherein a shape of the glass substrate for electronic amplification and a material of the glass member are determined so that an insulation resistance in a plate thickness direction per plane of 100 cm2 is 107 to 1011Ω.
Abstract:
A substrate assembly including a photosensitive etching glass substrate; and a first substrate and a second substrate for interposing both main surfaces of the photosensitive etching glass substrate between them. One of the main surfaces of the photosensitive etching glass substrate is thermally bonded to the first substrate, and the other main surface of the photosensitive etching glass substrate is bonded to the second substrate. When a thermal expansion coefficient of the photosensitive etching glass substrate is defined as C0, and a thermal expansion coefficient of the first substrate is defined as C1, and a thermal expansion coefficient of the second substrate is defined as C2, C1/C2 satisfies a relation of 0.7 or more and 1.3 or less, and at least one of a relation of C0/C1 satisfying less than 0.7 or larger than 1.3, and a relation of C0/C2 satisfying less than 0.7 or larger than 1.3 is satisfied.