Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
Provided is a substrate with multilayer reflective film used to manufacture a reflective mask having a multilayer reflective film having high reflectance with respect to exposure light and little film stress. The substrate with multilayer reflective film is provided with a multilayer reflective film for reflecting exposure light, the substrate with multilayer reflective film comprising a multilayer film obtained by building up an alternating stack of low refractive index layers and high refractive index layers on a substrate, and the multilayer reflective film contains krypton (Kr).
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
A method of manufacturing a reflective mask blank includes: forming a multilayer reflective film, which is configured to reflect EUV light, on a substrate to form a substrate with a multilayer reflective film; subjecting the substrate with a multilayer reflective film to defect inspection; forming an absorber film, which is configured to absorb the EUV light, on the multilayer reflective film of the substrate with a multilayer reflective film; forming a reflective mask blank, in which an alignment region is formed in an outer peripheral edge region of a pattern formation region by removing the absorber film so that the multilayer reflective film of an area including an element serving as a reference of defect information on the multilayer reflective film is exposed in the alignment region; and performing defect management of the reflective mask blank through use of the alignment region.
Abstract:
A substrate with a multilayer reflective film that yields a reflective mask achieving high reflectance and exhibiting excellent cleaning resistance. The present invention is directed to a substrate with a multilayer reflective film, which has: a substrate; a multilayer reflective film, formed on a substrate, having a layer comprising Si as a high refractive-index material and a layer comprising a low refractive-index material, wherein the layers are periodically laminate; and a Ru protective film, formed on the multilayer reflective film, for protecting the multilayer reflective film, wherein the surface layer of the multilayer reflective film on the other side of the substrate is the layer comprising Si, and wherein the Ru protective film comprises a Ru compound comprising Ru and Ti, wherein the Ru compound contains Ru in an amount greater than that in the stoichiometric composition of RuTi.
Abstract:
An object of the present invention is to provide a substrate with a multilayer reflective film and the like used in the manufacturing of a reflective mask blank for EUV lithography which is to be subjected to dry etching with a Cl-based gas, wherein in the substrate with the multilayer reflective film, the loss of protective films by the dry etching and subsequent wet cleaning is very limited. The present invention is a substrate with a multilayer reflective film used in the manufacturing of a reflective mask blank for EUV lithography, comprising a substrate, a multilayer reflective film disposed on the substrate to reflect EUV light, and a protective film disposed on the multilayer reflective film to protect the multilayer reflective film, the protective film includes an alloy containing at least two metals, the alloy being an all-proportional solid solution.
Abstract:
A reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask.
Abstract:
Provided are a reflective mask blank, having a phase shift film having little dependence of phase difference and reflectance on film thickness, and a reflective mask. The reflective mask blank is characterized in that the phase shift film is composed of a material comprised of an alloy having two or more types of metal so that reflectance of the surface of the phase shift film is more than 3% to not more than 20% and so as to have a phase difference of 170 degrees to 190 degrees, and when a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k>α*n+β is defined as Group A and a group of metal elements that satisfies the refractive index n and the extinction coefficient k of k
Abstract:
Provided are a reflective mask blank and a reflective mask, which are able to reduce the shadowing effects of EUV lithography and form a fine pattern. As a result, a semiconductor device can be stably manufactured with high transfer accuracy. The reflective mask blank comprises a multilayer reflective film and an absorber film in that order on a substrate, and the absorber film comprises a material comprising an amorphous metal comprising at least one or more elements among cobalt (Co) and nickel (Ni).
Abstract:
A method of manufacturing a reflective mask blank includes: forming a multilayer reflective film, which is configured to reflect EUV light, on a substrate to form a substrate with a multilayer reflective film; subjecting the substrate with a multilayer reflective film to defect inspection; forming an absorber film, which is configured to absorb the EUV light, on the multilayer reflective film of the substrate with a multilayer reflective film; forming a reflective mask blank, in which an alignment region is formed in an outer peripheral edge region of a pattern formation region by removing the absorber film so that the multilayer reflective film of an area including an element serving as a reference of defect information on the multilayer reflective film is exposed in the alignment region; and performing defect management of the reflective mask blank through use of the alignment region.