System and method for prediction of occupant motor response in accidents

    公开(公告)号:US10676083B1

    公开(公告)日:2020-06-09

    申请号:US15584905

    申请日:2017-05-02

    Abstract: Described is a system for prediction and active compensation of occupant motor response in a vehicle accident. The system uses a spinal reflex model to generate a stimulus based on an accident scenario of an occupant in a vehicle, the stimulus being a set of proprioceptive signals induced by the accident scenario. A neuromuscular model then determines activation and contraction dynamics based on the stimulus. The activation and contraction dynamics represent muscle contraction forces spanning a skeletal system of the occupant. A musculoskeletal model then generates a predicted motor response of the occupant based on the activation and contraction dynamics. The predicted motor response can be used for a variety of purposes, such as initiating active compensation in a vehicle or modifying airline cabin design parameters to decrease the likelihood of injury to the occupant.

    Method for neurostimulation enhanced team performance

    公开(公告)号:US09878155B1

    公开(公告)日:2018-01-30

    申请号:US15250150

    申请日:2016-08-29

    Abstract: Described is a system for augmenting team performance via individual neurostimulation. An assessment is generated for each team member of a team while the team member is performing a behavioral task using neuroimaging data. A target brain state is selected in team members for team performance enhancement. The target brain state is associated with specific brain regions, and the system determines a HD-tCS neurostimulation needed to reach the specific brain regions to induce the target brain state in the team members. The determined HD-tCS neurostimulation is applied to the team members while simultaneously sensing, via real-time neuroimaging, neural activity in each team member while the team member performs a behavioral task. Team performance is enhanced by adjusting the HD-tCS neurostimulation of each team member, based on the sensed neural activity, to direct each team member toward the target brain state.

Patent Agency Ranking