Abstract:
Embodiments disclose an antenna information sending method and device, and an antenna information receiving method and device. The method includes: obtaining first antenna information of a terminal device, where the first antenna information includes at least one or more of a maximum number of layers for uplink spatial multiplexing that are supported by the terminal device, an antenna number supported by the terminal device, or whether the terminal device supports smart switch on/off of UE's antenna ports. The method also includes sending the first antenna information to a base station. In this way, the terminal device can control, according to a service requirement of the terminal device, an antenna deployed on the terminal device, and report antenna information of the terminal device to the base station in a timely manner.
Abstract:
A data sending method including receiving uplink data or a pilot sent by user equipment by using an uplink subframe, performing beam characteristic design according to at least one of the uplink data or the pilot, generating beam characteristic information, determining a precoding mode according to the beam characteristic information, and performing precoding processing on to-be-sent data according to the determined precoding mode where the precoding mode includes at least one of a space-time based precoding mode or a space-frequency based precoding mode and sending precoded to-be-sent data to the user equipment. The precoding mode can be flexibly selected according to at least one of uplink data or a pilot sent by user equipment.
Abstract:
Embodiments of the present invention disclose a base station, including: a first channel state information acquiring module, configured to acquire channel state information of dimension-reduced channel subspace by means of level-one channel state information measurement; a set determining module, configured to: schedule the user equipment, and determine a set of user equipment involved in multiple-input multiple-output; a second channel state information acquiring module, configured to: perform level-two channel state information measurement on user equipment in the set of user equipment to acquire state information of a dimension-reduced real-time channel; and a data sending module, configured to: process downlink data and a user-specific demodulation reference signal by means of two-level precoding, and send processed downlink data and a processed user-specific demodulation reference signal to the user equipment in the set of user equipment.
Abstract:
The present disclosure provides a data processing method, apparatus, and system. The method includes: receiving N data streams sent by a network-side device, and determining a demodulation reference signal DMRS corresponding to each of the N data streams. The method also includes grouping DMRSs corresponding to the N data streams into M groups; mapping each group of DMRSs in the M groups to corresponding resource element (RE) positions, and acquiring port-related information corresponding to each group of DMRSs. The method further includes sending the port-related information corresponding to each group of DMRSs to a terminal device; adding each group of DMRSs in the M groups to data streams; and sending the data streams to which the DMRSs are added to the terminal device.
Abstract:
Embodiments disclose an antenna information sending method and device, and an antenna information receiving method and device. The method includes: obtaining first antenna information of a terminal device, where the first antenna information includes at least one or more of a maximum number of layers for uplink spatial multiplexing that are supported by the terminal device, an antenna number supported by the terminal device, or whether the terminal device supports smart switch on/off of UE's antenna ports. The method also includes sending the first antenna information to a base station. In this way, the terminal device can control, according to a service requirement of the terminal device, an antenna deployed on the terminal device, and report antenna information of the terminal device to the base station in a timely manner.
Abstract:
An adaptive multi-antenna data transmission method, apparatus, and system are provided. The adaptive multi-antenna data transmission method includes: acquiring, at a current time interval, a beam adjustment parameter of user equipment UE; adjusting a beam width of the UE according to the beam adjustment parameter of the UE; and performing precoding processing on to-be-transmitted data of the UE according to an adjusted beam width of the UE and direction information of the UE, so as to perform data transmission. A beam width of UE is adjusted, so that a direction of a beam during data transmission can better match a direction of the UE. Therefore, a status or quality of a link for the UE is improved and a performance loss is reduced.
Abstract:
Embodiments of the present invention disclose a base station, including: a first channel state information acquiring module, configured to acquire channel state information of dimension-reduced channel subspace by means of level-one channel state information measurement; a set determining module, configured to: schedule the user equipment, and determine a set of user equipment involved in multiple-input multiple-output; a second channel state information acquiring module, configured to: perform level-two channel state information measurement on user equipment in the set of user equipment to acquire state information of a dimension-reduced real-time channel; and a data sending module, configured to: process downlink data and a user-specific demodulation reference signal by means of two-level precoding, and send processed downlink data and a processed user-specific demodulation reference signal to the user equipment in the set of user equipment.
Abstract:
Embodiments of the present invention disclose a base station, including: a first channel state information acquiring module, configured to acquire channel state information of dimension-reduced channel subspace by means of level-one channel state information measurement; a set determining module, configured to: schedule the user equipment, and determine a set of user equipment involved in multiple-input multiple-output; a second channel state information acquiring module, configured to: perform level-two channel state information measurement on user equipment in the set of user equipment to acquire state information of a dimension-reduced real-time channel; and a data sending module, configured to: process downlink data and a user-specific demodulation reference signal by means of two-level precoding, and send processed downlink data and a processed user-specific demodulation reference signal to the user equipment in the set of user equipment.
Abstract:
Embodiments of the present invention provide a precoding information obtaining method and a device. The method includes: separately precoding, by a network device by using N sub-codebooks, a pilot group including K pilots to obtain N precoded pilot groups, where the sub-codebooks are subsets of a precoding codebook, the precoding codebook includes M precoding vectors, each sub-codebook includes K precoding vectors; sending, by the network device, a precoded pilot group to a terminal device in each of W RB groups; and receiving, by the network device, precoding information fed back by the terminal device for any one of W precoded pilot groups. According to the precoding information obtaining method and the device, a quantity of pilot signals sent by the network device in each RB group is reduced, and pilot overheads in each RB group are reduced.
Abstract:
Embodiments of the present invention provide a precoding information obtaining method and a device. The method includes: separately precoding, by a network device by using N sub-codebooks, a pilot group including K pilots to obtain N precoded pilot groups, where the sub-codebooks are subsets of a precoding codebook, the precoding codebook includes M precoding vectors, each sub-codebook includes K precoding vectors; sending, by the network device, a precoded pilot group to a terminal device in each of W RB groups; and receiving, by the network device, precoding information fed back by the terminal device for any one of W precoded pilot groups. According to the precoding information obtaining method and the device, a quantity of pilot signals sent by the network device in each RB group is reduced, and pilot overheads in each RB group are reduced.