摘要:
A method for preparing a multilayer material based on active lithium, by depositing a film of active lithium on a protective layer at a sufficient speed so that substantially no oxidation of the lithium occurs, and/or during a sufficient time for the adhesion of the lithium to develop after contact with the protective layer. The multilayer material, when incorporated in an electrochemical battery as an anode, has excellent impedance stability and no formation of dendrites during the cycling. Batteries where the anode is the multilayer material are particularly efficient in terms of their coulombic efficiency.
摘要:
Polymers used as rolling lubricating agents, to compositions including said polymers, and to alkali metal films including the polymers or compositions on the surface(s) thereof. The use of said polymers and compositions is also described for strip-rolling alkali metals or alloys thereof in order to obtain thin films. Methods for producing said thin films, which are suitable for use in electrochemical cells, are also described. An improved lubricant according to formula I, which, for example, achieves enhanced conductivity, and/or enables the production of electrochemical cells having an improved life span in cycles.
摘要:
A secondary battery includes: a cathode including a cathode current collector and a first cathode active material layer provided on the cathode current collector; an anode including an anode current collector and a first anode active material layer provided on the anode current collector to face the first cathode active material layer and including a titanium-containing compound; an intermediate electrode provided between the cathode and the anode and including an intermediate current collector, a second anode active material layer provided on the intermediate current collector to face the first cathode active material layer and including the titanium-containing compound, and a second cathode active material layer provided on the intermediate current collector to face the first anode active material layer; and an electrolytic solution including a solvent and an electrolyte salt and having number of molecules of the electrolyte salt equal to or larger than number of molecules of the solvent.
摘要:
A composite electrode material consisting of a carbon coated complex oxide, fibrous carbon and a binder. Said material is prepared by a method which includes co-grinding an active electrode material and fibrous carbon, and adding a binder to the co-grinded mixture to lower the viscosity of the mixture. The fibrous carbon is preferably vapor grown carbon fibers.
摘要:
Process for the preparation of electrodes from a porous material making it possible to obtain electrodes that are useful in electrochemical systems and that have at least one of the following properties: a high capacity in mAh/gram, a high capacity in mAh/liter, a good capacity for cycling, a low rate of self-discharge, and a good environmental tolerance.
摘要:
There is provided a positive-electrode material for a lithium secondary battery. The material comprises a lithium oxide compound or a complex oxide as reactive substance. The material also comprises at least one type of carbon material, and optionally a binder. A first type of carbon material is provided as a coating on the reactive substance particles surface. A second type of carbon material is carbon black. And a third type of carbon material is a fibrous carbon material provided as a mixture of at least two types of fibrous carbon material different in fiber diameter and/or fiber length. Also, there is provided a method for preparing the material as well as lithium secondary batteries comprising the material.
摘要:
A positive electrode material is used to produce a positive electrode of a lithium secondary battery, the positive electrode material being a composite lithium material that includes a first lithium compound and a second lithium compound. For instance, the first lithium compound is in the form of particles and comprises at least one compound selected from a layered lithium compound and a spinel-type lithium compound. Preferably, the second lithium compound comprises at least one compound selected from a lithium-containing phosphate compound and a lithium-containing silicate compound. An amorphous carbon material layer and/or graphene-structured carbon material layer is present on the entire surface of the first lithium compound and the second lithium compound. The second lithium compound forms a thin-film layer on part or the entirety of the carbon material layer present on the surface of the first lithium compound particles.
摘要:
All-solid-state lithium-sulfur electrochemical cells and production methods thereof are described. The Li—S electrochemical cells comprise at least one multilayer component which comprises an ion-conductive solid electrolyte film, a positive electrode film containing a sulfur composite, and a negative electrode film containing lithium. Positive electrodes films, prefabricated electrolyte-positive electrode elements, their uses as well as methods of their production are also described.
摘要:
Method for preparing a particulate material including particles of an element of group IVa, an oxide thereof or an alloy thereof, the method including: (a) dry grinding particles from an ingot of an element of group IVa, an oxide thereof or an alloy thereof to obtain micrometer size particles; and (b) wet grinding the micrometer particles dispersed in a solvent carrier to obtain nanometer size particles having a size between 10 to 100 nanometers, optionally a stabilizing agent is added during or after the wet grinding. Method can include further steps of (c) drying the nanometer size particles, (d) mixing the nanometer size particles with a carbon precursor; and (e) pyrolyzing the mixture, thereby forming a coat of conductive carbon on at least part of the surface of the particles. The particulate material can be used in fabrication of an anode in an electrochemical cell or electrochemical storage energy apparatus.
摘要:
Method for preparing a particulate material including particles of an element of group IVa, an oxide thereof or an alloy thereof, the method including: (a) dry grinding particles from an ingot of an element of group IVa, an oxide thereof or an alloy thereof to obtain micrometer size particles; and (b) wet grinding the micrometer particles dispersed in a solvent carrier to obtain nanometer size particles having a size between 10 to 100 nanometers, optionally a stabilizing agent is added during or after the wet grinding. Method can include further steps of (c) drying the nanometer size particles, (d) mixing the nanometer size particles with a carbon precursor; and (e) pyrolyzing the mixture, thereby forming a coat of conductive carbon on at least part of the surface of the particles. The particulate material can be used in fabrication of an anode in an electrochemical cell or electrochemical storage energy apparatus.