Abstract:
An all-in-one jigless projection loading system for a vehicle is adapted to load and assemble a body component to a vehicle body. The all-in-one jigless projection loading system may include: a fixing bracket fixed to an arm of a robot; a position adjusting member rotatably mounted to the fixing bracket; a gripper mounted to the fixing bracket to be movable backward and forward, and gripping the body component; an array unit mounted to the position adjusting member, and arraying the body component; and a welding unit mounted to the fixing bracket, and projection-welding the body component to a vehicle body.
Abstract:
A spot welding apparatus includes a stationary frame having a housing formed therein. An upper welding gun is mounted to a length direction of a pressing unit disposed in the housing of the stationary frame. A plurality of lower welding guns are mounted on an outside of the stationary frame and ends of the plurality of lower welding guns selectively face one end of the upper welding gun in a length direction of the lower welding guns by the plurality of lower welding guns. A plurality of actuators are mounted on the outside of the stationary frame. A plurality of link units are disposed between the actuators and the lower welding guns, connect the actuators and the lower welding guns, respectively, and rotate as the actuators are operated.
Abstract:
A twin spot welding apparatus includes a fixed welder in a fixed frame on a top of which a mounting unit of a robot arm is integrally formed, a guide plate mounted on the fixed frame, an angle control plate movably installed in the guide plate, a servo actuator mounted on the fixed frame to move the angle control plate on the guide plate, and a moving welder formed so that a slope of the moving welder may be controlled by an angle control unit on the angle control plate and formed in a moving frame so that, when the servo actuator and the angle control unit are operated, movement from the fixed welder and the slope of the moving welder are controlled so that a pitch and a slope between welding points of the fixed welder and the moving welder vary.
Abstract:
A spot welding apparatus includes a stationary frame having a housing formed therein. An upper welding gun is mounted to a length direction of a pressing unit disposed in the housing of the stationary frame. A plurality of lower welding guns are mounted on an outside of the stationary frame and ends of the plurality of lower welding guns selectively face one end of the upper welding gun in a length direction of the lower welding guns by the plurality of lower welding guns. A plurality of actuators are mounted on the outside of the stationary frame. A plurality of link units are disposed between the actuators and the lower welding guns, connect the actuators and the lower welding guns, respectively, and rotate as the actuators are operated.
Abstract:
A method of welding panels overlapping each other includes a one-directional clamping step that performs one-directional clamping by positioning electrodes of a pair of one-directional spot welding guns with respect to an upper panel and a lower panel overlapping each other, a pressure welding step that forms a plurality of pressure welding portions in a zero gap status by pressure-welding the upper panel to the lower panel in a temporary welding status, by pressing and supplying electricity to the upper panel with the electrodes of the one-directional spot welding guns, plasma spot step that forms a molten portion between the pressure welding portions by performing plasma welding on the pressure welding portions with a plasma welding machine, and a cooling step that forms a welded portion by overlapping the pressure welding portions and the molten portion between the upper panel and the lower panel by cooling the molten portion.
Abstract:
A method of welding panels overlapping each other includes a one-directional clamping step that performs one-directional clamping by positioning electrodes of a pair of one-directional spot welding guns with respect to an upper panel and a lower panel overlapping each other, a pressure welding step that forms a plurality of pressure welding portions in a zero gap status by pressure-welding the upper panel to the lower panel in a temporary welding status, by pressing and supplying electricity to the upper panel with the electrodes of the one-directional spot welding guns, plasma spot step that forms a molten portion between the pressure welding portions by performing plasma welding on the pressure welding portions with a plasma welding machine, and a cooling step that forms a welded portion by overlapping the pressure welding portions and the molten portion between the upper panel and the lower panel by cooling the molten portion.