摘要:
A method of forming transistor gate structures in an integrated circuit device can include forming a high-k gate insulating layer on a substrate including a first region to include PMOS transistors and a second region to include NMOS transistors. A polysilicon gate layer can be formed on the high-k gate insulating layer in the first and second regions. A metal silicide gate layer can be formed directly on the high-k gate insulating layer in the first region and avoiding forming the metal-silicide in the second region. Related gate structures are also disclosed.
摘要:
A semiconductor device has two transistors of different structure from each other. One of transistors is P-type and the other is N-type. One of the transistors includes a gate structure in which a polysilicon layer contacts a gate insulation film while the other transistor includes a gate structure in which a metal layer contacts a gate insulation film.
摘要:
A semiconductor device has two transistors of different structure from each other. One of transistors is P-type and the other is N-type. One of the transistors includes a gate structure in which a polysilicon layer contacts a gate insulation film while the other transistor includes a gate structure in which a metal layer contacts a gate insulation film.
摘要:
A semiconductor device has two transistors of different structure from each other. One of transistors is P-type and the other is N-type. One of the transistors includes a gate structure in which a polysilicon layer contacts a gate insulation film while the other transistor includes a gate structure in which a metal layer contacts a gate insulation film.
摘要:
A method of forming transistor gate structures in an integrated circuit device can include forming a high-k gate insulating layer on a substrate including a first region to include PMOS transistors and a second region to include NMOS transistors. A polysilicon gate layer can be formed on the high-k gate insulating layer in the first and second regions. A metal silicide gate layer can be formed directly on the high-k gate insulating layer in the first region and avoiding forming the metal-silicide in the second region. Related gate structures are also disclosed.
摘要:
In some embodiments of the present invention, methods of forming a tantalum carbon nitride layer include introducing a source gas including a tantalum metal complex onto a substrate, wherein one or more of the ligands of the tantalum metal complex include nitrogen and one or more of the ligands of the tantalum metal complex include carbon; and thermally decomposing the tantalum metal complex to form a tantalum carbon nitride layer on the substrate. In some embodiments, the tantalum metal complex includes Ta(NR1)(NR2R3)3, wherein R1, R2 and R3 are each independently H or a C1-C6 alkyl group. In some embodiments, the tantalum metal complex may be [Ta(═NC(CH3)2C2H5)(N(CH3)2)3]. Methods of forming a gate structure, methods of manufacturing dual gate electrodes and methods of manufacturing a capacitor including tantalum carbon nitride are also provided herein.
摘要翻译:在本发明的一些实施例中,形成氮化钽层的方法包括将包含钽金属络合物的源气体引入到基底上,其中一个或多个钽金属络合物的配体包括氮和一个或多个 钽金属络合物的配体包括碳; 并且在所述衬底上热分解所述钽金属络合物以形成钽碳氮化物层。 在一些实施方案中,钽金属络合物包括Ta(NR 1)3(NR 2 R 3)3, 其中R 1,R 2和R 3各自独立地为H或C 1 -C 3 - 6烷基。 在一些实施方案中,钽金属络合物可以是[Ta(-NC(CH 3)2)2 H 2 H 5, (N(CH 3)2)3)3。 形成栅极结构的方法,制造双栅电极的方法以及制造包括氮化钽的电容器的方法也在本文中提供。
摘要:
A method of manufacturing a gate electrode of a MOS transistor including a tungsten carbon nitride layer is disclosed. After a high dielectric layer is formed on a substrate, a source gas including tungsten amine derivative flows onto the high dielectric layer. A tungsten carbon nitride layer is formed on the high dielectric layer by decomposing the source gas. Thereafter, a gate electrode is formed by patterning the tungsten carbon nitride layer. According to the present invention, a gate electrode having a work function of over 4.9 eV is formed.
摘要:
In a semiconductor device with dual gates and a method of manufacturing the same, a dielectric layer and first and second metallic conductive layers are successively formed on the semiconductor substrate having first and second regions. The second metallic conductive layer which is formed on the first metallic conductive layer of the second region is etched to form a metal pattern. The first metallic conductive layer is etched using the metal pattern as an etching mask. A polysilicon layer is formed on the dielectric layer and the metal pattern. The first gate electrode is formed by etching portions of the polysilicon layer, the metal pattern, and the first metallic conductive layer of the first region. The second gate electrode is formed by etching a portion of the polysilicon layer formed directly on the dielectric layer of the second region.
摘要:
A semiconductor device having a dual gate is formed on a substrate having a dielectric layer. A first metallic conductive layer is formed on the dielectric layer to a first thickness, and annealed to have a reduced etching rate. A second metallic conductive layer is formed on the first metallic conductive layer to a second thickness that is greater than the first thickness. A portion of the second metallic conductive layer formed in a second area of the substrate is removed using an etching selectivity. A first gate structure having a first metallic gate including the first and the second metallic conductive layers is formed in a first area of the substrate. A second gate structure having a second metallic gate is formed in the second area. A gate dielectric layer is not exposed to an etching chemical due to the first metallic conductive layer, so its dielectric characteristics are not degraded.
摘要:
In a gate structure and a method of forming the same, a first conductive pattern is formed on a substrate and comprises a metal-containing material. A second conductive pattern is formed on the first conductive pattern, and the second conductive pattern comprises metal and silicon. A third conductive pattern is formed on the second conductive pattern, and the third conductive pattern comprises polysilicon. A gate conductive pattern of an n-type metal-oxide semiconductor (NMOS) transistor, a p-type MOS (PMOS) transistor and a complementary MOS (CMOS) transistor includes the gate structure. The second conductive pattern is interposed between the first and third conductive patterns and the third conductive pattern is prevented from making direct contact with the first conductive pattern, so that polysilicon in the third conductive pattern is sufficiently prevented from being chemically reacted with the metal in the first conductive pattern in advance, thereby improving electrical characteristics of the transistor.