摘要:
This is a method of forming a vertical transistor device comprising: forming an n-type first drain/source layer 42; patterning a portion of the first drain/source layer 42 to form a channel 44 and a trench; forming a p-type gate structure 46 in the trench; and forming a n-type second drain/source layer 48 over the gate structure 46 and the channel 44; contacting the gate structure 54; forming p-ohmic contact to the gate structure 56; forming n-ohmic source contact 54; and forming n-ohmic drain contact 58. Other devices and methods are also disclosed.
摘要:
This is a method of forming a vertical transistor device comprising: forming an n-type first drain/source layer 42; patterning a portion of the first drain/source layer 42 to form a channel 44 and a trench; forming a p-type gate structure 46 in the trench; and forming a n-type second drain/source layer 48 over the gate structure 46 and the channel 44. Other devices and methods are also disclosed.
摘要:
A vertical transistor (70) comprising a first semiconductor layer (14) of a first conductive type. A gate structure (32) of a second conductive type disposed on the first semiconductor layer (14). The gate structure (32) may include a plurality of gates (38) separated by channels (40). A second semiconductor layer (50) of the first conductive type may be disposed over the gate structure (32) and in the channels (40). An arresting element (36) may be disposed between and upper surface of the gates (38) and the second semiconductor layer (50). A void (52) may be formed in the second semiconductor layer (50) over the gate (38).
摘要:
A vertical field effect transistor (1700) and fabrication method with buried gates (1704) having spaced apart gate fingers and connecting structure and overgrown with source and channel epilayer followed by a doping connection of the gate fingers and connecting structure is disclosed. The vertical field effect transistor elements (1702, 1704, 1706, 1708, 1720, 1724) are made of III-V semiconductor compound grown on a germanium substrate (1726).
摘要:
This is a method of forming a vertical transistor device. The method comprises: forming a n-type source layer 12; forming a p+ carbon doped gate layer 14; forming a gate structure from the gate layer; and forming a n-type drain layer 16 over the gate structure to provide a buried carbon doped gate structure. The buried carbon doped gate structure provides a very small device with favorable on-resistance, junction capacitance, gate resistance, and gate driving voltage. Other devices and methods are also disclosed.
摘要:
An optocoupler structure comprising a semiconductor chip having an integrated circuit and an optically transparent, electrically insulating layer having first and second surfaces; an organic diode integral with said first surface, said diode operable to emit electromagnetic radiation; and said circuit including a radiation-sensitive semiconductor device integral with said second surface, electrically isolated from said diode, and positioned in the path of said radiation.
摘要:
Systems and other embodiments associated with synthetic instrumentation are presented. A reconfigurable synthetic instrumentation unit comprises an input module, with dual input/output ports and conditioning logic to condition an input signal. An RF down converter selectively down converts the conditioned input signal. A sampled RF down converter selectively samples the conditioned input signal. A pair of narrowband A/D converters are configured to convert one of the conditioned signal, the down converted signal and the sampled signal to produce a narrowband digital signal. A pair of broadband A/D converters convert at least one of the conditioned signal, the down converted signal and the sampled signal to produce a broadband digital signal. Signal processing logic selectively performs digital signal processing on the broadband digital signal or the narrow band digital signal.
摘要:
Provided is a method for manufacturing an interconnect. The method for manufacturing the interconnect, in one embodiment, includes forming a first metal feature over or within a substrate, the first metal feature having an exposed surface. The method for manufacturing the interconnect may additionally include cleaning the exposed surface using a reactive system with a reducing agent, and subjecting the exposed surface to a plasma etch. The method for manufacturing the interconnect may further include contacting the first metal feature with a second metal feature.
摘要:
Systems and other embodiments associated with synthetic instrumentation are presented. A reconfigurable synthetic instrumentation unit comprises an input module, with dual input/output ports and conditioning logic to condition an input signal. An RF down converter selectively down converts the conditioned input signal. A sampled RF down converter selectively samples the conditioned input signal. A pair of narrowband A/D converters are configured to convert one of the conditioned signal, the down converted signal and the sampled signal to produce a narrowband digital signal. A pair of broadband A/D converters convert at least one of the conditioned signal, the down converted signal and the sampled signal to produce a broadband digital signal. Signal processing logic selectively performs digital signal processing on the broadband digital signal or the narrow band digital signal.
摘要:
A method and apparatus are disclosed for achieving a desired thickness profile in a semiconductor device (44) using a flow-flange reactor (10), by adjusting input flow ratios in the flow-flange (12) of the reactor (10). A target thickness profile is established. A first set of optimum input flow ratios are then determined in response to the target thickness profile, based upon a first plurality of sample thickness profiles and a first plurality of sets of sample input flow ratios, wherein each of the sample thickness profiles corresponds to one of the first plurality of sets of sample input flow ratios. The input flow ratios of the reactor (10) are then adjusted in response to the first optimum set of input flow ratios.