Abstract:
The invention relates to a cooling module including an axial fan for vehicles, in particular for electric vehicles, which is characterized in that a cooling module casing encloses the axial fan and a flow deflection region and a cooling airflow enters the cooling module through an intake plane and leaves the cooling module through an outflow plane, wherein the intake plane and the outflow plane are aligned at an angle alpha in relation to one another and the angle alpha as the inclination of the intake plane in relation to the outflow plane is formed greater than or equal to 55° and the cooling module casing has a rear wall, wherein the rear wall is arranged at an angle beta of at most 90° in relation to the outflow plane, so that a flow deflection region is formed in the cooling module casing between the intake plane and the outflow plane and the rear wall.
Abstract:
An arrangement for the air distribution of an air conditioning system (1) of a motor vehicle. The air conditioning system (1) is configured with a housing (2) with at least two flow paths (6, 7), which empty into a mixing chamber (8), and at least one air outlet (3a, 3b, 3c) as well as an air flap (10, 11, 12) which can open and close the at least one air outlet (3a, 3b, 3c). The arrangement has a device (18) for air mixing with at least one air resistance element (21), which is supported so that it can turn about an axis of rotation (20) and which extends in the direction of the axis of rotation (20). The air resistance element (21) is configured with at least one flow through opening, so that depending on the position of the device (18) a cross section of at least one flow path (6, 7) of the housing (2) can be changed.
Abstract:
Air conditioning system for multi-zone air conditioning of a motor vehicle interior comprising a casing with a mixing chamber and several zone outlets outgoing from mixing chamber, in which an evaporator and at least one heat exchanger are disposed such that main air flow from evaporator through at least one heat exchanger into zone outlets is linear and at least two bypass channels, each comprising a louver, in order to circumvent at least one heat exchanger connect a region downstream of evaporator and a region downstream of at least one heat exchanger, wherein the first bypass channel, as a mixing bypass channel, opens out into mixing chamber and the second bypass channel, as a stratification bypass channel, opens out into a zone outlet.
Abstract:
The invention relates to a cooling module including an axial fan for vehicles, in particular for electric vehicles, which is characterized in that a cooling module casing encloses the axial fan and a flow deflection region and a cooling airflow enters the cooling module through an intake plane and leaves the cooling module through an outflow plane, wherein the intake plane and the outflow plane are aligned at an angle alpha in relation to one another and the angle alpha as the inclination of the intake plane in relation to the outflow plane is formed greater than or equal to 55° and the cooling module casing has a rear wall, wherein the rear wall is arranged at an angle beta of at most 90° in relation to the outflow plane, so that a flow deflection region is formed in the cooling module casing between the intake plane and the outflow plane and the rear wall.
Abstract:
A heating and air conditioning system for a motor vehicle including a housing having an air outlet, a heating heat exchanger disposed inside the housing with a warm air path to heat air flowing therethrough, a warm air duct having a warm air intake opening and a warm air duct discharge opening disposed downstream of the heating heat exchanger channeling a partial flow of warm air from the warm air path to the air outlet, and a mode control damper rotatable about a rotational axis and connected downstream of the warm air duct in terms of flow, wherein the air outlet may be selectively opened completely or partially, and in a closed state may be partially or completely closed. The mode control damper functions simultaneously as the control damper for controlling the volume of air exiting the warm air duct discharge opening.
Abstract:
A heating and air conditioning system for a motor vehicle including a housing having an air outlet, a heating heat exchanger disposed inside the housing with a warm air path to heat air flowing therethrough, a warm air duct having a warm air intake opening and a warm air duct discharge opening disposed downstream of the heating heat exchanger channeling a partial flow of warm air from the warm air path to the air outlet, and a mode control damper rotatable about a rotational axis and connected downstream of the warm air duct in terms of flow, wherein the air outlet may be selectively opened completely or partially, and in a closed state may be partially or completely closed. The mode control damper functions simultaneously as the control damper for controlling the volume of air exiting the warm air duct discharge opening.
Abstract:
An arrangement for the air distribution of an air conditioning system (1) of a motor vehicle. The air conditioning system (1) is configured with a housing (2) with at least two flow paths (6, 7), which empty into a mixing chamber (8), and at least one air outlet (3a, 3b, 3c) as well as an air flap (10, 11, 12) which can open and close the at least one air outlet (3a, 3b, 3c). The arrangement has a device (18) for air mixing with at least one air resistance element (21), which is supported so that it can turn about an axis of rotation (20) and which extends in the direction of the axis of rotation (20).The air resistance element (21) is configured with at least one flow through opening, so that depending on the position of the device (18) a cross section of at least one flow path (6, 7) of the housing (2) can be changed.
Abstract:
Air conditioning system for multi-zone air conditioning of a motor vehicle interior comprising a casing with a mixing chamber and several zone outlets outgoing from mixing chamber, in which an evaporator and at least one heat exchanger are disposed such that main air flow from evaporator through at least one heat exchanger into zone outlets is linear and at least two bypass channels, each comprising a louver, in order to circumvent at least one heat exchanger connect a region downstream of evaporator and a region downstream of at least one heat exchanger, wherein the first bypass channel, as a mixing bypass channel, opens out into mixing chamber and the second bypass channel, as a stratification bypass channel, opens out into a zone outlet.