摘要:
To process the output signal of a rotational speed sensor (2) which generates an alternating voltage dependent in respect of frequency and amplitude on the rotational speed, two low-pass filters (TP1, TP2) serve to produce a useful signal (I1), on the one hand, and a reference signal (I2), on the other hand. The two signals are compared. In dependence on the difference of these signals (I1, I2) a pulse-shaped output signal, namely the processed sensor signal, is generated by means of a comparator (7). The reference signal dynamically follows the useful signal with the aid of a control signal issue by an adapter circuit (20,21).
摘要:
A circuit configuration for editing, or processing the output signal of a speed sensor (5) includes a trigger circuit (1, 22), the changeover points or "hysteresis" of which are controllable, with the circuit configuration being furnished with circuits for determining the coupling factor (k), and with circuits for adjusting the hysteresis in response to the coupling factor. The coupling factor (k)--multiplied by the frequency of the sensor signal corresponding to the speed--forms the amplitude of the sensor output signal. With the coupling factor (k) being high, the hysteresis will be high, while it will be low with a low coupling factor.
摘要:
To transmit data which is supplied by a rotational speed sensor in the form of an alternating signal as well as additional data via a signal line, a sequence of current pulses of a predetermined duration is derived from the alternating signal, the pulse intervals or interpulse periods containing the information on rotational speed. The additional data is transmitted in the interpulse periods, and transmission of the additional data is synchronized by the individual rotating signal sensor pulses. Preferably, the method is employed for active sensors, and both the sensor pulses and the additional data are transmitted in the form of current signals. During standstill, in the absence of a sensor pulse, transmission of the additional data is triggered by auxiliary synchronization pulses.
摘要:
An arrangement for determining the rotational behavior of a rotating body or encoder (3) includes a sensor module (1) which comprises a sensor element (2; 2.1 to 2.4), a controllable power source (4) supplying a load-independent current representative of the rotational behavior, a modulator (5) that controls the power source (4) as a function of signals of the sensor element (2; 2.1 to 2.4) and of signals supplied by an external signal source through an additional port (K5), and an evaluating circuit (9). The sensor module (1) is magnetically coupled to the encoder (3). The output signal of the sensor module (1) is a signal, representative of the rotational behavior, with a superimposed status signal and/or additional signal.
摘要:
In a circuit configuration for monitoring a plurality of coils and the final stages for actuating these coils, the coils are connected to the supply voltage by way of a joint supply line and a joint relay. Connected to the supply line, by way of a high-ohmic resistor, is a test voltage source and a first potential monitor, by which the potential prevailing on the supply line is determined after the voltage supply has been interrupted by opening the relay contact. A second potential monitor serves to monitor the proper potential changes on activation of the voltage supply by actuating the relay.
摘要:
A circuit configuration which serves to condition the output signal of a rotational speed sensor, e.g., the wheel sensor of an automotive vehicle. The circuit configuration includes a trigger circuit, the "hysteresis" or trigger thresholds thereof being controllable, and includes circuits for determining a coupling factor which, multiplied by the frequency of the sensor signal corresponding to the speed of rotation, forms the amplitude of the sensor output signal. To determine the coupling factor, and to adjust the hysteresis, threshold values are predefined for the output signal of the rotational speed sensor. Upon start of the vehicle, the coupling factor is determined from the frequency of the sensor signal at the point of time the threshold values are reached, and the hysteresis is adjusted accordingly.
摘要:
A circuit configuration for actuating a safety relay (1) such as the main relay of an electronically controlled brake system of an automotive vehicle at least has two transistors (T1, T2) connected in series and a monitoring circuit (5) which will urge the transistors into the non-conductive state if there is a defect or trouble. The operativeness of the transistors (T1, T2) or of the monitoring circuit (5) will cause the safety relay (1) to be switched off.
摘要:
The present invention describes a sensor assembly for detecting movements, wherein a sensor signal is produced in an active sensor (1) by an encoder (E) acted upon by the movement, and which includes a first device (2, 3, 4, 5) that permits converting the sensor signal, along with at least one additional information, into an output signal which can be transmitted to an evaluating device, and which is in particular characterized in that a second device (1a) is provided by which a signal voltage that depends on an air slot (d) between the active sensor (1) and the encoder (E) is detected and sent to the first device (2, 3, 4, 5) for transmission as additional information.
摘要:
A circuit configuration for controlling a major number of consumers (5) such as the electromagnetically operable multi-directional valves of an anti-lock control system (MWV1-MWVn) comprises a control unit (2, 3) whose output signals can be fed to the consumers (5) via amplifier stages (4). The individual amplifier stages (4; VS1-VSn) are designed as so-called “intelligent power drivers” and essentially consist of a power amplifier (18) with integrated electronic controls and monitors. The control unit (2, 3) and the amplifier stages (4; VS1-VSn) are interconnected to form a closed loop or chain. Data transfer is performed from a synchronous serial interface of the control unit (2, 3), via the individual amplifier stages (4; VS1-VSn) and back to a serial entry of the control unit (2, 3).
摘要:
This is a circuit configuration provided for an anti-lock-controlled brake system and serving for processing sensor signals obtained by wheel sensors (5) and for generating braking pressure control signals. This circuit configuration contains two microcontrollers (1, 2) interconnected by data exchange lines (7). The handled signals are concurrently processed by the microcontrollers independently of one another and the exchanged signals are checked for consistency. A deviation of the exchanged signals which is due to malfunctions is signalized to a safety circuit (8) which, thereupon, interrupts the power supply to the solenoid valves (Ll . . . Ln). The monitoring signal (WD1, WD2) fed to the safety circuit (8) is a predetermined alternating signal in case of consistency of the exchanged signals and in case of proper operation of the circuit configuration. The safety circuit (8) compares the alternating signal with a time standard derived from a clock generator (TG2, TG3) which is independent of the operating cycle (TG1) of the microcontrollers (1,2). A change in the alternating signal, as well as a failure in the time standard, causes a cut-off of power supply and, hence, of anti-lock control.