摘要:
A current to perpendicular to plane (CPP) magnetoresistance (MR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. A CPP MR read head includes a first shield, an MR sensor formed on the first shield, and a second shield contacting the MR sensor proximal to an ABS. The CPP MR read head further includes insulating material between the MR sensor and the second shield, where the insulating material is distal to the ABS to electrically isolate the MR sensor from the second shield distal to the ABS. Sense current injected from the second shield through the MR sensor and into the first shield is confined proximal to the ABS at a location where the second shield contacts the MR sensor.
摘要:
A current to perpendicular to plane (CPP) magnetoresistance (MR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. A CPP MR read head includes a first shield, an MR sensor formed on the first shield, and a second shield contacting the MR sensor proximal to an ABS. The CPP MR read head further includes insulating material between the MR sensor and the second shield, where the insulating material is distal to the ABS to electrically isolate the MR sensor from the second shield distal to the ABS. Sense current injected from the second shield through the MR sensor and into the first shield is confined proximal to the ABS at a location where the second shield contacts the MR sensor.
摘要:
A current to perpendicular to plane (CPP) magnetoresistance (MR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. A CPP MR read head includes a first shield, an MR sensor formed on the first shield, and a second shield contacting the MR sensor proximal to an ABS. The CPP MR read head further includes insulating material between the MR sensor and the second shield, where the insulating material is distal to the ABS to electrically isolate the MR sensor from the second shield distal to the ABS. Sense current injected from the second shield through the MR sensor and into the first shield is confined proximal to the ABS at a location where the second shield contacts the MR sensor.
摘要:
A current to perpendicular to plane (CPP) magnetoresistance (MR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. A CPP MR read head includes a first shield, an MR sensor formed on the first shield, and a second shield contacting the MR sensor proximal to an ABS. The CPP MR read head further includes insulating material between the MR sensor and the second shield, where the insulating material is distal to the ABS to electrically isolate the MR sensor from the second shield distal to the ABS. Sense current injected from the second shield through the MR sensor and into the first shield is confined proximal to the ABS at a location where the second shield contacts the MR sensor.
摘要:
A current to perpendicular to plane (CPP) differential magnetoresistance (DMR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. The CPP DMR read head includes a first electrically conductive lead, a first MR sensor formed on the first lead, and a non-magnetic electrically conductive spacer formed on the first MR sensor proximate to the ABS. The CPP DMR read head further includes insulating material on the first MR sensor distal to the ABS. A second MR sensor is formed in contact with the conductive spacer such that the second MR sensor is in electrical contact with the first MR sensor proximate to the ABS and is electrically isolated from the first MR sensor distal to the ABS. A second electrically conductive lead is in contact with the second MR sensor. Sense current injected into the first and the second MR sensor is confined proximate to the ABS.
摘要:
A current to perpendicular to plane (CPP) differential magnetoresistance (DMR) read head using current confinement proximal to an air bearing surface (ABS) is disclosed. The CPP DMR read head includes a first electrically conductive lead, a first MR sensor formed on the first lead, and a non-magnetic electrically conductive spacer formed on the first MR sensor proximate to the ABS. The CPP DMR read head further includes insulating material on the first MR sensor distal to the ABS. A second MR sensor is formed in contact with the conductive spacer such that the second MR sensor is in electrical contact with the first MR sensor proximate to the ABS and is electrically isolated from the first MR sensor distal to the ABS. A second electrically conductive lead is in contact with the second MR sensor. Sense current injected into the first and the second MR sensor is confined proximate to the ABS.
摘要:
Methods and apparatus provide a refill configuration adjacent a back-edge that defines a height of a magnetoresistive read sensor. Milling through layers of the sensor forms the back-edge and may be initially conducted at a first angle of incidence greater than a second angle of incidence. In combination, an insulating material and a polish resistant material, such as a non-magnetic metal, disposed on the insulating material fills a void created by the milling. The sensor further includes first and second magnetic shields with the layers of the sensor along with the polish resistant material and insulating material disposed between the first and second magnetic shields.
摘要:
Methods and apparatus provide a refill configuration adjacent a back-edge that defines a height of a magnetoresistive read sensor. Milling through layers of the sensor forms the back-edge and may be initially conducted at a first angle of incidence greater than a second angle of incidence. In combination, an insulating material and a polish resistant material, such as a non-magnetic metal, disposed on the insulating material fills a void created by the milling. The sensor further includes first and second magnetic shields with the layers of the sensor along with the polish resistant material and insulating material disposed between the first and second magnetic shields.
摘要:
A magnetic read head and a method for manufacturing a magnetic read head are provided. In one embodiment, the method includes providing the magnetic read head comprising a pinning layer disposed over a substrate of the magnetic read head, a pinned layer, a reference layer, a tunneling barrier layer, and a free layer, wherein the free layer is in contact with the tunneling barrier layer. The method further includes milling partially through the free layer from a back surface, thereby creating an exposed face of the free layer which is coplanar with the substrate and oxidizing a portion of the free layer between the exposed face and the tunneling barrier layer. The method further includes milling through the free layer, tunneling barrier layer, reference layer, pinned layer, and pinning layer along lateral sides of the magnetic read head.
摘要:
A method is provided for eliminating lead to shield electrical shorts at the ABS of an MR read head. The electrical shorts are eliminated by removing streaks of conductive material which extend between the conductive leads and the conductive shields across first and second insulative gap layers. A photoresist layer is formed over the edge surface of the MR stripe at the ABS along with coextensive widths of edge surfaces of other thin film surfaces at the ABS. The uncovered edge surfaces of the remaining thin film layers at the ABS are then subjected to reactive ion etching to remove about 500.ANG. of the uncovered edge surfaces. With a photoresist layer approximately 10 .mu.m thick, the edge surface of the MR stripe is fully protected during this process. After the etching step, the photoresist layer is removed and the MR read head is free of electrical shorts between the leads and the shields. This method is especially adaptable for batch production of MR read heads where the MR stripes are arranged in rows and columns on a wafer. Strips of photoresist are formed over the columns of MR stripes for their protection while the unwanted streaks of conductive material between the leads and the shields are removed by the aforementioned etching process.