摘要:
The present invention is directed to a power transformer and VSD mounted on the chiller equipment. The transformer is preferably a liquid-filled transformer rated for medium/high voltage input, and at least two output low voltages, one voltage for the VSD and other power equipment, and another voltage for the control panel and control equipment. The placement of the power transformer on the chiller eliminates the need to allocate additional floor space for an auxiliary transformer or medium/high voltage VSD. The transformer also includes cooling means in the form of a heat exchanger in which the liquid is cooled by circulating condenser water, chilled water or refrigerant from the chiller system. The cooling means may also be connected to cooling coils connected to the VSD. The size of the power transformer is significantly reduced by the use of the chiller system to remove heat from the transformer while in operation, thereby maintaining the ambient temperature rise of the transformer within its rated operating temperature range. The transformer and VSD heat is discharged to the outside ambient eliminating additional cooling requirements for the equipment room.
摘要:
A gate drive circuit for a silicon controlled rectifier (SCR) connected in an a-c power circuit includes a voltage divider network connected between a d-c voltage source and the SCR for developing a varying voltage on a control node, depending upon whether the anode-to-cathode a-c voltage of the SCR is positive or negative. A first switching transistor, responsive to the control node voltage, controls conduction of a second switching transistor connected between the d-c voltage source and a voltage regulated driver circuit. In this way, a constant drive current is applied to the SCR gate only while the anode-to-cathode voltage of the SCR is positive.
摘要:
The power delivered from a three-phase A-C power source and through a network of SCR's (connected, for example, to form a full wave rectifier bridge or to provide an A-C switch) to a load circuit is adjusted by controlling the conduction angles of the SCR's. The control is achieved by developing, from only one of the three alternating phase voltages provided by the A-C power supply, a reference square wave signal of the same frequency and whose amplitude excursions are precisely synchronized or keyed to the zero voltage crossings of the selected phase voltage, even though that phase voltage may include undesired harmonics, noise, transients or other distortion components. Since the influence of the undesired signal components has now been eliminated and since the reference square wave signal also has a fixed phase relationship with the other two phase voltages, logic circuitry may be controlled by the reference square wave signal, and by a d-c control voltage representing a desired power flow to the load circuit, to produce gating signals for triggering the SCR's into conduction at the angles required to translate the desired power to the load circuit. With this arrangement, control of all three phases is made immune to undesired signal components in any of the phase voltages.
摘要:
The present invention is directed to a power transformer and VSD mounted on the chiller equipment. The transformer is preferably a liquid-filled transformer rated for medium/high voltage input, and at least two output low voltages, one voltage for the VSD and other power equipment, and another voltage for the control panel and control equipment. The placement of the power transformer on the chiller eliminates the need to allocate additional floor space for an auxiliary transformer or medium/high voltage VSD. The transformer also includes cooling means in the form of a heat exchanger in which the liquid is cooled by circulating condenser water, chilled water or refrigerant from the chiller system. The cooling means may also be connected to cooling coils connected to the VSD. The size of the power transformer is significantly reduced by the use of the chiller system to remove heat from the transformer while in operation, thereby maintaining the ambient temperature rise of the transformer within its rated operating temperature range. The transformer and VSD heat is discharged to the outside ambient eliminating additional cooling requirements for the equipment room.
摘要:
The power dissipated, in a trigger circuit for gating on a semiconductor switch, is minimized by employing a constant current source to provide the gate trigger current. This assures adequate triggering regardless of supply voltage variations or switch intrinsic control voltage requirements. Power is saved by supplying only the current required to drive the semiconductor switch on, thereby preventing overdrive. With constant d-c gate current, the precise amount of power needed to turn on and close the switch is provided while wasting relatively little energy due to gate intrinsic voltage variations of the switch or to input line voltage variations.
摘要:
The present invention relates to a cold plate for cooling electronic components comprising a base having a top surface onto which at least one electronic component is to be placed; a cooling well formed in the top of the base and open at the top; a feed channel formed in the base for carrying fluid into the cooling well; a drain channel formed in the base for carrying cooling fluid away from the cooling well; cooling well inlets and outlets formed in the cooling well and in communication with the feed channel and drain channels, respectively. The feed and drain channels are sufficiently large relative to the size and flow characteristics of the well and cooling well inlets and outlets such that when the cooling fluid flows through the device, the pressure drop across the feed channel is substantially less than the pressure drop across the well.
摘要:
Systems consistent with this invention comprise a trigger circuit for triggering a silicon device having a control terminal, where the silicon device is subject to variations in the intrinsic control requirements. The trigger circuit comprises a source of direct current (DC) supply voltage, and a DC-to-DC current mode Buck converter for converting the supply voltage into an output DC current not subject to undesired variations due to variations in the supply voltage, the Buck converter supplying to the control terminal a minimum current to turn on the silicon device despite the variations in the intrinsic control requirements. The silicon device may comprise a silicon controlled rectifier (SCR) with a gate terminal, an anode terminal, and a cathode terminal, and wherein the control terminal is the gate terminal, and wherein the variations in the intrinsic control requirements are variations in the intrinsic gate-to-cathode control current and voltage requirements.
摘要:
A system and method for providing an anticipatory Schmitt trigger circuit that changes the output level of the trigger circuit in anticipation of crossing a predetermined voltage value such as a zero voltage level. In an exemplary embodiment, the anticipatory Schmitt trigger includes a comparator, a feedback resistor, an input resistor, a pull-up resistor, a plurality of voltage divider resistors, and a capacitor.
摘要:
Systems and methods for operating a variable speed drive to receive an input AC power at a fixed AC input voltage and frequency and provide an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter stage to convert the input AC voltage to a boosted DC voltage, a DC link connected to the converter stage to filter and store the boosted DC voltage from the converter stage; and an inverter stage to convert the boosted DC voltage into AC power with variable voltage and the variable frequency. An integral bypass contactor is connected in parallel with the VSD between the AC power source and the AC output power. The integral bypass contactor is arranged to bypass the VSD when the VSD output frequency and voltage are approximately equal with the AC input voltage and frequency.
摘要:
Systems and methods for synchronous operation of variable speed drives having active converters include extending the synchronous operation of an active converter to the AC mains voltage during complete line dropout. A phase angle control circuit includes a squaring amplifier, a first phase-lock loop circuit associated and a second phase-lock loop circuit. The squaring amplifier receives the AC power source and outputs a rectangular output signal to a pair of phase lock loop (PLL) circuits. The first PLL circuit with a first lag-lead filter is configured with a high cutoff frequency to provide the converter stage with a phase angle parameter; and the second phase-lock loop circuit including a second lag-lead filter configured to have a low cutoff frequency to provide the lag-lead filter the capability of storing the phase angle of the mains voltage during mains interruption.