摘要:
A negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is a negative electrode material for a non-aqueous electrolyte secondary battery capable of reversibly absorbing and desorbing lithium, and it includes a solid phase A and a solid phase B that have different compositions and has a structure in which the surface around the solid phase A is entirely or partly covered by the solid phase B. The solid phase A contains at least one element selected from the group consisting of silicon, tin and zinc, and the solid phase B contains the above-described at least one element contained in the solid phase A, and at least one element selected from the group consisting of Group IIA elements, transition elements, Group IIB elements, Group IIIB elements and Group IVB elements. The atomic arrangement and structure (e.g., crystal structure or amorphous structure) of at least one solid phase selected from the group consisting of the solid phase A and the solid phase B are controlled. It is possible to provide a negative electrode material for a non-aqueous electrolyte secondary battery in which deterioration due to charge/discharge cycle characteristics is suppressed, by using such a material as a negative electrode material for a non-aqueous electrolyte secondary battery. It is also possible to provide a non-aqueous electrolyte secondary battery having excellent charge/discharge cycle characteristics, by including such a negative electrode material for a non-aqueous electrolyte secondary battery.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
A nonaqueous electrolyte secondary battery with excellent charging/discharging cycle characteristics is provided, more specifically a nonaqueous electrolyte secondary battery in which deterioration of the conductivity of a negative electrode due to charging/discharging cycle is suppressed and a method for manufacturing the same are provided. The nonaqueous electrolyte secondary battery includes: a positive electrode and a negative electrode that are capable of reversibly absorbing and desorbing Li ions; and a nonaqueous electrolyte having lithium ion conductivity. The negative electrode includes a collector and active material particles that are disposed on a surface of the collector. The active material particles include Si and at least one element R selected from the group consisting of Sn, In, Ga, Pb and Bi. Metallic bond including the element R is formed between the active material particles.
摘要:
A nonaqueous electrolyte secondary battery with excellent charging/discharging cycle characteristics is provided, more specifically a nonaqueous electrolyte secondary battery in which deterioration of the conductivity of a negative electrode due to charging/discharging cycle is suppressed and a method for manufacturing the same are provided. The nonaqueous electrolyte secondary battery includes: a positive electrode and a negative electrode that are capable of reversibly absorbing and desorbing Li ions; and a nonaqueous electrolyte having lithium ion conductivity. The negative electrode includes a collector and active material particles that are disposed on a surface of the collector. The active material particles include Si and at least one element R selected from the group consisting of Sn, In, Ga, Pb and Bi. Metallic bond including the element R is formed between the active material particles.
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
A negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle.
摘要翻译:一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和B的复合粒子,所述固相A分散在固相B中,所述比例(IA / IB) 归因于固相B的固相A的最大衍射X射线强度(IA)与归于固相B的最大衍射X射线强度(IB)的折射率相对于衍射线满足0.001≤n1E; IA / IB&N1; 0.1 通过复合粒子的广角X射线衍射测定得到。
摘要:
The present invention relates to a negative electrode material for non-aqueous electrolyte secondary batteries, characterized in that the negative electrode material comprises a composite particle including solid phases A and B, the solid phase A being dispersed in the solid phase B, and the ratio (IA/IB) of the maximum diffracted X-ray intensity (IA) attributed to the solid phase A to the maximum diffracted X-ray intensity (IB) attributed to the solid phase B satisfies 0.001≦IA/IB≦0.1, in terms of a diffraction line obtained by a wide-angle X-ray diffraction measurement of the composite particle. This negative electrode material is capable of suppressing of pulverization thereof due to repeated cycles. Further, the use of this negative electrode material allows production of a non-aqueous electrolyte secondary battery having a high capacity and an excellent cycle life characteristic.
摘要翻译:非水电解质二次电池用负极材料技术领域本发明涉及一种非水电解质二次电池用负极材料,其特征在于,所述负极材料包括固相A和固体B的复合粒子,固相A分散在固相B中, (固体A)的最大衍射X射线强度(I A A)的最大衍射峰值(I / A / B) 归因于固相B的X射线强度(I B B)满足0.001≤I≤A B> 通过复合粒子的广角X射线衍射测定得到的衍射线。 该负极材料由于重复循环而能够抑制其粉碎。 此外,通过使用该负极材料,可以制造具有高容量,优异的循环寿命特性的非水电解质二次电池。
摘要:
An alkaline primary battery provided with a positive electrode containing a positive electrode active material and graphite, a negative electrode containing a negative electrode active material, a separator, and an alkaline electrolyte, the positive electrode active material containing manganese dioxide, the alkaline electrolyte containing zinc oxide, and the positive electrode containing metatitanic acid. Due to this, in a battery in which an alkaline electrolyte contains zinc oxide, productions of hetaerolite and the like at the positive electrode and depositions of titanium compound, zinc oxide, and the like on the inner face of a battery case are suppressed, and thus, excellent discharge performance and storage characteristics can be obtained.
摘要:
An AA alkaline battery according to the present invention includes: a positive electrode; a negative electrode; a separator; an alkaline electrolyte; and a negative electrode current collector. The negative electrode contains zinc, indium, and bismuth. The weight of zinc is 4.0 g or more, and the total weight of indium and bismuth is 450 ppm or less with respect to the weight of zinc. The negative electrode current collector contains copper. Tin is provided on at least part of the surface of the negative electrode current collector.
摘要:
An alkaline battery includes: a positive electrode 3 including a positive electrode active material; a negative electrode 6 including a negative electrode active material; a separator 4; and an alkaline electrolyte. The negative electrode active material includes zinc alloy powder containing calcium and bismuth. The zinc alloy powder contains from 10% to 60%, both inclusive, by weight, of calcium with respect to bismuth, from 0.004% to 0.02%, both inclusive, by weight, of bismuth, and at least 11%, by weight, of particles with particle sizes of 75 μm or less. With this configuration, high-power pulse discharge performance of the alkaline battery can be sufficiently enhanced without problems such as a rapid temperature rise in a short circuit and leakage.