摘要:
A charge/discharge control method for an alkaline storage battery (11) includes: obtaining in advance a coefficient (K) representing characteristics of a memory effect of the alkaline storage battery; causing the alkaline storage battery to perform a charge/discharge between a lower-limit depth-of-charge (SOCb), of which a depth-of-charge is set within a range of 10% to 30%, and an upper-limit depth-of-charge (S), of which a depth-of-charge is set within a range of 70% to 90%; calculating an additional charge electricity quantity (C) based on the coefficient (K), the upper-limit depth-of-charge (S), and a predetermined reference time (T); measuring a charging/discharging time during which the alkaline storage battery performs the charge/discharge; and performing a charge of the alkaline storage battery with the calculated additional charge electricity quantity added to the upper-limit depth-of-charge, each time when the measured charging/discharging time reaches the reference time.
摘要:
A negative electrode active material for a nickel-metal hydride battery of the present invention includes a hydrogen storage alloy, the hydrogen storage alloy containing La, Mg, Ni, Co, Al, and element M. The molar ratio y of Ni to the total of La and Mg is 2≦y≦3, the molar ratio z of Co to the total of La and Mg is 0.25≦z≦0.75, the molar ratio α of Al to the total of La and Mg is 0.01≦α≦0.05, and the molar ratio x of Mg to the total of La and Mg is 0.01≦x≦0.5. Element M represents at least one selected from the group consisting of Y and Sn, and the content of element M in the hydrogen storage alloy is 0.4 wt % or less.
摘要:
An electrode alloy powder includes a hydrogen storage alloy and magnetic material clusters. The hydrogen storage alloy contains 20 to 70 wt % of Ni. The magnetic material clusters contain metal nickel, and have an average cluster size of 8 to 10 nm. A method for producing the electrode alloy powder includes an activation step of allowing a raw material powder including a hydrogen storage alloy to be in contact with an aqueous solution containing A wt % of sodium hydroxide and held at 100° C. or greater for B minutes. A and B satisfy 2410≦A×B≦2800.
摘要:
A charge/discharge control method for an alkaline storage battery (11) includes: obtaining in advance a coefficient (K) representing characteristics of a memory effect of the alkaline storage battery; causing the alkaline storage battery to perform a charge/discharge between a lower-limit depth-of-charge (SOCb), of which a depth-of-charge is set within a range of 10% to 30%, and an upper-limit depth-of-charge (S), of which a depth-of-charge is set within a range of 70% to 90%; calculating an additional charge electricity quantity (C) based on the coefficient (K), the upper-limit depth-of-charge (S), and a predetermined reference time (T); measuring a charging/discharging time during which the alkaline storage battery performs the charge/discharge; and performing a charge of the alkaline storage battery with the calculated additional charge electricity quantity added to the upper-limit depth-of-charge, each time when the measured charging/discharging time reaches the reference time.
摘要:
A negative electrode material for a nickel-metal hydride battery containing a hydrogen-absorbing alloy represented by a general formula: Mm1-aT1aNixAlyMnzCobT2c, in which: Mm is at least one of light rare earth elements; T1 is at least one selected from the group consisting of Mg, Ca, Sr and Ba; T2 is at least one selected from the group consisting of Sn, Cu and Fe; and 0.015≦a≦0.5, 2.5≦x≦4.5, 0.05≦y+z≦2, 0≦b≦0.6, 0≦c≦0.6 and 5.6≦x+y+z+b+c≦6 are satisfied.
摘要翻译:一种含有由以下通式表示的吸氢合金的镍氢电池用负极材料:Mm1-aT1aNixAlyMnzCobT2c,其中:Mm为轻稀土元素中的至少一种; T1是选自Mg,Ca,Sr和Ba中的至少一种; T2是选自Sn,Cu和Fe中的至少一种; 和0.015≦̸ x + y + z + b + c≦̸ 6,0和nlE; x + 满意
摘要:
A negative electrode material for a nickel-metal hydride battery containing a hydrogen-absorbing alloy represented by a general formula: Mm1-aT1aNixAlyMnzCobT2c, in which: Mm is at least one of light rare earth elements; T1 is at least one selected from the group consisting of Mg, Ca, Sr and Ba; T2 is at least one selected from the group consisting of Sn, Cu and Fe; and 0.015≦a≦0.5, 2.5≦x≦4.5, 0.05≦y+z≦2, 0≦b≦0.6, 0≦c≦0.6 and 5.6≦x+y+z+b+c≦6 are satisfied.
摘要翻译:一种含有由以下通式表示的吸氢合金的镍氢电池用负极材料:Mm1-aT1aNixAlyMnzCobT2c,其中:Mm为轻稀土元素中的至少一种; T1是选自Mg,Ca,Sr和Ba中的至少一种; T2是选自Sn,Cu和Fe中的至少一种; 和0.015 <= a <= 0.5,2.5 <= x <= 4.5,0.05 <= y + z <= 2,0 <= b <= 0.6,0 <= c <= 0.6和5.6 <= x + y + z + b + c <= 6。
摘要:
A nonaqueous electrolyte secondary battery with excellent charging/discharging cycle characteristics is provided, more specifically a nonaqueous electrolyte secondary battery in which deterioration of the conductivity of a negative electrode due to charging/discharging cycle is suppressed and a method for manufacturing the same are provided. The nonaqueous electrolyte secondary battery includes: a positive electrode and a negative electrode that are capable of reversibly absorbing and desorbing Li ions; and a nonaqueous electrolyte having lithium ion conductivity. The negative electrode includes a collector and active material particles that are disposed on a surface of the collector. The active material particles include Si and at least one element R selected from the group consisting of Sn, In, Ga, Pb and Bi. Metallic bond including the element R is formed between the active material particles.
摘要:
Provided is a hydrogen occluding alloy powder having an ideally activated surface state where oxide and hydroxide precipitated on the surface of said powder have been removed quickly with a simple means. The method for surface treating a hydrogen occluding alloy powder involves agitating a hydrogen occluding alloy powder containing Ni and Mg with an Ni content from 35 to 60 wt % in a lithium hydroxide aqueous solution (first process). Then the hydrogen occluding alloy powder is agitated in an alkali metal hydroxide aqueous solution containing at least either one of sodium hydroxide and potassium hydroxide (second process).
摘要:
A negative electrode active material for a nickel-metal hydride battery of the present invention includes a hydrogen storage alloy, the hydrogen storage alloy containing La, Mg, Ni, Co, Al, and element M. The molar ratio y of Ni to the total of La and Mg is 2≦y≦3, the molar ratio z of Co to the total of La and Mg is 0.25≦z≦0.75, the molar ratio α of Al to the total of La and Mg is 0.01≦α≦0.05, and the molar ratio x of Mg to the total of La and Mg is 0.01≦x≦0.5. Element M represents at least one selected from the group consisting of Y and Sn, and the content of element M in the hydrogen storage alloy is 0.4 wt % or less.
摘要翻译:本发明的镍氢电池用负极活性物质包括储氢合金,含有La,Mg,Ni,Co,Al和元素M的储氢合金.Ni与总量的摩尔比y 的La和Mg为2 <= y <= 3,Co与La和Mg的总量的摩尔比z z为0.25≤z≤0.75,Al与La和Mg的总量的摩尔比α为0.01 α=α<0.05,Mg与La和Mg总量的摩尔比x为0.01≤x≤0.5。 元素M表示选自Y和Sn中的至少一种,并且储氢合金中元素M的含量为0.4重量%以下。
摘要:
An electrode alloy powder includes a hydrogen storage alloy and magnetic material clusters. The hydrogen storage alloy contains 20 to 70 wt % of Ni. The magnetic material clusters contain metal nickel, and have an average cluster size of 8 to 10 nm. A method for producing the electrode alloy powder includes an activation step of allowing a raw material powder including a hydrogen storage alloy to be in contact with an aqueous solution containing A wt % of sodium hydroxide and held at 100° C. or greater for B minutes. A and B satisfy 2410≦A×B≦2800.