摘要:
A silicon-based monolithic microwave integrated circuit architecture is described. This architecture, called MICROX.TM., is a combination of silicon material growth and wafer processing technologies. A wafer is fabricated using a substrate of high resistivity silicon material. An insulating layer is formed in the wafer below the surface area of active silicon, preferably using the SIMOX process. A monolithic circuit is fabricated on the wafer. A ground plane electrode is formed on the back of the wafer. Direct current and rf capacitive losses under microstrip interconnections and transistor source and drain electrodes are thereby minimized. Reduction in the resistivity of the substrate material as a result of CMOS processing can be minimized by maintaining a shielding layer over the bottom surface of the wafer. Microstrip and airbridge connectors, salicide processing and nitride side wall spacing can be used to further enhance device performance. The resulting architecture is an alternative to gallium arsenide integrated circuits for microwave applications.
摘要:
An improved phased-array active antenna transmit-receive means utilizing a multiplicity of individual transmit-receive cells positioned in an array format upon a common wafer of semiconductor material. Each transmit-receive cell, comprises a multiplicity of redundant, integrated circuit, electronic devices implanted upon the common semiconductor substrate. The transmit-receive cells utilize novel mitered mechanical switches to permanently interconnect individual electronic devices into either transmit or receive circuits during the fabrication and test of the transmit-receive cells. Radio frequency and direct current input and output vias formed from a novel metal evaportion technique connect the devices upon the surface of the common semiconductor wafer to underlying, insulated direct current distribution circuits and a radio frequency manifold. This array of improved phased-array active antenna transmit-receive means comprised of transmit-receive cells sharing common central processing means, logic control and heat dissipation means results in a significant reduction in the size and weight of the standard phased-array active antenna system. This significant reduction in antenna system size and weight is very important in broad band electronic countermeasure systems or narrow band phased array active antenna radar systems as used in advanced tactical fighters, or space applications.
摘要:
An improved phased-array active antenna transmit-receive means utilizing a multiplicity of individual transmit-receive cells positioned in an array format upon a common wafer of semiconductor material. Each transmit-receiver cell, comprises a multiplicity of redundant, integrated circuit, electronic devices implanted upon the common semiconductor substrate. The transmit-receive cells utilize novel mitered mechanical switches to permanently interconnect individual electronic devices into either transmit or receive circuits during the fabrication and test of the transmit-receive cells. Radio frequency and direct current input and output vias formed from a novel metal evaporation technique connect the devices upon the surface of the common semiconductor wafer to underlying, insulated direct current distribution circuits and a radio frequency manifold. This array of improved phased-array active antenna transmit-receive means comprised of transmit-receive cells sharing common central processing means, logic control and heat dissipation means results in a significant reduction in the size and weight of the standard phased-array active antenna system. This significant reduction in antenna system size and weight is very important in broad band electronic countermeasure systems or narrow band phased array active antenna radar systems as used in advanced tactical fighters, or space applications.
摘要:
An improved phased-array active antenna transmit-receive means utilizing a multiplicity of individual transmit-receive cells positioned in an array format upon a common wafer of semiconductor material. Each transmit-receive cell, comprises a multiplicity of redundant, integrated circuit, electronic devices implanted upon the common semiconductor substrate. The transmit-receive cells utilize novel mitered mechanical switches to permanently interconnect individual electronic devices into either transmit or receive circuits during the fabrication and test of the transmit-receive cells. Radio frequency and direct current input and output vias formed from a novel metal evaporation technique connect the devices upon the surface of the common semiconductor wafer to underlying, insulated direct current distribution circuits and a radio frequency manifold. This array of improved phased-array active antenna transmit-receive means comprised of transmit-receive cells sharing common central processing means, logic control and heat dissipation means results in a significant reduction in the size and weight of the standard phased-array active antenna system. This significant reduction in antenna system size and weight is very important in broad band electronic countermeasure systems or narrow band phased array active antenna radar systems as used in advanced tactical fighters, or space applications.
摘要:
An electronically steerable antenna array which includes time delay units connected to individual antenna elements for time delaying a microwave signal to and/or from the antenna elements. Each time delay unit includes small mercury wetted switches for controlling signal flow via a time delay path or a bypass path, through the time delay unit from a signal input to a signal output.
摘要:
A switch having spaced apart conductors with a high resistivity gate member therebetween. First and second mercury droplets are respectively connected to the ends of the conductors. When a control signal is applied to the gate member, the mercury droplets are drawn to it and establish electrical connection between the conductors to close the switch. Upon removal of the control signal the mercury droplets separate and assume their initial droplet form thus opening the switch.
摘要:
A sensor produces signals corresponding to positions of objects within a field of view over time. A motion detector is provided for determining movement of the sensor. Signals from the sensor and the detector go to a processing unit which causes an appropriate modification of the signal received from the sensor to compensate for the movement.
摘要:
Push-pull complimentary MOSFET devices are formed in a thin active layer between the top surface of a high resistivity silicon wafer and a insulating layer implanted below the top surface. Each MOSFET is composed of a plurality of cells each having a source, a gate, and a drain region extending fully through the active layer. Grooves extending through the wafer are lined with vias which connect the source regions with a floating ground plane on the bottom of the wafer. The gates of all the cells are connected by a gate bus on the top surface. Air bridges spanning the gates and the source vias connect the drain conductors of each cell. Neutralizing capacitors connected between an input and an opposite output of the push-pull complimentary MOSFET devices match the parasitic capacitances of the devices and provide wide bandwidth amplification with roll off well into the GHz range without the need for tuning inductors.
摘要:
One example discloses a heat transfer device that can comprise a semiconductor material having a first region and a second region. The first region and the second region are doped to propel a charged carrier from the first region to the second region. The heat transfer device can also comprise an array of pointed tips thermoelectrically communicating with the second region. A heat sink faces the array, and a vacuum tunneling region is formed between the pointed tips and the heat sink. The heat transfer device further can further comprise a power source for biasing the heat sink with respect to the first region. The first region defines an N-type semiconductor material and the second region defines a P-type semiconductor material.
摘要:
A micro-electrical mechanical system (MEMS) mirror assembly including an array of micro-mirrors formed on a substrate and having springs on one side and which angularly tilt between ON and OFF states in response to an electrostatic force generated by a voltage applied to an electrode located on the substrate. At least one, but preferably two springs in the form of two thin strips of metal attach to post(s) at the side edge of the mirror and act as springs which provide a restoring force when the mirror is tilted between an OFF state which occurs when the mirror is flat relative to the substrate with no voltage applied, and in the ON state when the mirror is tilted when a voltage is applied.