Abstract:
A spark plug includes a ceramic component, whose surface is at least in part coated with a glaze, with the glaze containing 0.6% to 4% by weight of fluoride and 6% to 11.2% by weight of zinc oxide.
Abstract:
A spark plug includes a ceramic component, whose surface is at least in part coated with a glaze, with the glaze containing 0.6% to 4% by weight of fluoride and 6% to 11.2% by weight of zinc oxide.
Abstract:
A glass ceramic, for use as a resistor or a gas-tight glass ceramic solder for use in a spark plug, includes a fused seal of a starting glass fused from a starting mixture containing SiO2, Al2O3, TiO2 and CaO, the fused seal including crystalline phases in at least some areas. A method for producing such a glass ceramic provides for the starting glass to be processed in a first method step to form a starting material, which is heated for a first period of time in a second method step from a starting temperature, which is below the softening temperature of the starting glass, to a fusion temperature, which is above the softening temperature of the starting glass, and is kept at that temperature for a second period of time and finally is cooled again. A spark plug may include a terminal stud and a center electrode, which are electrically connected across a resistor that is formed in at least some areas by the glass ceramic.
Abstract:
A glass or glass powder is fused from a starting mixture containing approximately 38 wt % to 48 wt % SO2, 15 wt % to 19 wt % Al2O3, 4.5 wt % to 11 wt % TiO2, 0 wt % to 1.5 wt % Na2O, 0 wt % to 1.5 wt % K2O and 23 wt % to 30 wt % CaO. In addition, a glass powder mixture includes two glass powders, a carbon black powder and an organic binder, the first glass powder having a mean particle size of approximately 150 &mgr;m to 250 &mgr;m, the second glass powder having a mean particle size of less than approximately 100 &mgr;m, which may be 10 &mgr;m to 70 &mgr;m. The glass or glass powder mixture is suitable for producing a glass ceramic, such as that used as a resistor seal and/or a gas-tight glass ceramic solder in a spark plug.
Abstract:
A spark plug includes a ceramic component, whose surface is at least in part coated with a glaze, with the glaze containing 0.6% to 4% by weight of fluoride and 6% to 11.2% by weight of zinc oxide.
Abstract:
A gas sensor, whose purpose is to determine a physical property of a measuring gas, e.g., to determine the concentration of a gas component or the temperature of an exhaust gas. The gas sensor includes a sensor element arranged in a metal housing which is sealed by at least one sealing element arranged in a metal receptacle. The metal receptacle is affixed to the housing. The sealing element surrounds the sensor element in a centered position along its longitudinal extension L or on its half facing the measuring gas.
Abstract:
A sensor element, especially a temperature sensor (5) is proposed, having a sensitive area (11), whose electrical resistance changes under the influence of a temperature to which the sensitive area (11) is exposed. In this case, sensitive area (11) has a glass ceramic fusion (15) of a starting material containing at least one component which is furnished at least substantially with a surface metallization. The proposed temperature sensor (5) is especially suitable for use at temperatures in excess of 1000° C., at which it shows resistance characteristics like that of a platinum resistor.
Abstract:
To decrease the preheat time and power requirements in preheater-type glow plugs for Diesel engines, a closed ceramic tube (20), for example of aluminum oxide and of about 5 mm diameter has, on the bottom (21) thereof applied a layer or film-like heater element (24, 24'), for example in an undulating or zig-zag configuration (FIG. 2) or in form of a constriction or pinch (FIG. 4: 24') to provide a concentrated point or strip source of heat. The heater layer itself is protected by a protective coating (25) and, to provide for the required heat distribution, the underlying bottom (21, 21') of the tube (20, 20') supports an insulating intermediate layer and possibly a heat conductive layer is intermediate. Preheat times in the order of 1-2 seconds, with lower current consumption than prior wound-wire plugs can be obtained.
Abstract:
An insulation layer system, in particular for gas sensors, is proposed, having at least one electrically conductive solid-electrolyte layer (10), an electrically conductive layer (20) and at least one electrically insulating layer (13) between the solid-electrolyte layer (10) and the electrically conductive layer (20). The material of the insulating layer (13) contains, prior to sintering, pentavalent metal oxides of niobium or tantalum as an additive, it being possible for the additive to diffuse into the adjoining solid-electrolyte layer (10) during sintering.
Abstract:
Oxygen sensors having a fine-grained stabilized cubic zirconium dioxide electrolyte contact respective electrodes. The zirconium dioxide contains between 15% and 50% by volume of Al.sub.2 O.sub.3 in a crystalline state and has good mechanical and thermal properties. The oxygen sensor may have a composite zirconium dioxide solid electrolyte element. The invention also includes a wider range of related Al.sub.2 O.sub.3 - containing stabilized cubic zirconium dioxides containing between about 8% and 85% by volume Al.sub.2 O.sub.3. The invention further provides methods of manufacturing such Al.sub.2 O.sub.3 - containing zirconium dioxide and for manufacturing oxygen sensors.
Abstract translation:具有细粒度稳定的立方二氧化锆电解质的氧传感器与相应的电极接触。 二氧化锆在结晶状态下含有15体积%至50体积%的Al 2 O 3,具有良好的机械和热性能。 氧传感器可以具有复合二氧化锆固体电解质元件。 本发明还包括含有约8%至85%(体积)Al 2 O 3的更广泛的相关的含Al 2 O 3的稳定的立方二氧化锆。 本发明还提供制造这种含Al 2 O 3的二氧化锆和用于制造氧传感器的方法。