摘要:
A CPT1 inhibitor compound is represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof: or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating a subject having cancer comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
摘要:
A CPT1 inhibitor compound is represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof: or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating a subject having cancer comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
摘要:
A CPT inhibitor compound is represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof: or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating a subject having cancer comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
摘要:
A CPT inhibitor compound is represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof: or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating a subject having cancer comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
摘要:
This invention relates to compositions and methods for cancer therapeutics. In particular, the present invention provides compositions and methods for treating tumors by inhibiting the activity of CPT1C. The methods and compositions can additionally include inhibition of glycolysis.
摘要:
An apparatus and method, as may be used for predicting solar irradiance variation, are provided. The apparatus may include a solar irradiance predictor processor (10) configured to process a sequence of images (e.g., sky images). The irradiance predictor processor may include a cloud classifier module (18) configured to classify respective pixels of an image of a cloud to indicate a solar irradiance-passing characteristic of at least a portion of the cloud. A cloud motion predictor (22) may be configured to predict motion of the cloud over a time horizon. An event predictor (24) may be configured to predict over the time horizon occurrence of a solar obscuration event. The prediction of the solar obscuration event may be based on the predicted motion of the cloud. The event predictor may include an irradiance variation prediction for the obscuration event based on the solar irradiance-passing characteristic of the cloud.
摘要:
An advertising system is disclosed. In one embodiment, the system includes an advertising display configured to provide an advertisement to potential customers and a camera configured to capture images of the potential customers when the potential customers pass the advertising display. The system may also include an image processing system having a processor and a memory. The memory may include application instructions for execution by the processor, and the image processing system may be configured to execute the application instructions to derive usage characteristics of the potential customers with respect to the advertising display through analysis of the captured images. Additional methods, systems, and articles of manufacture are also disclosed.
摘要:
Systems provided herein include a learning environment and an agent. The learning environment includes an avatar and an object. A state signal corresponding to a state of the learning environment includes a location and orientation of the avatar and the object. The agent is adapted to receive the state signal, to issue an action capable of generating at least one change in the state of the learning environment, to produce a set of observations relevant to a task, to hypothesize a set of action models configured to explain the observations, and to vet the set of action models to identify a learned model for the task.
摘要:
An apparatus and method, as may be used for predicting solar irradiance variation, are provided. The apparatus may include a solar irradiance predictor processor (10) configured to process a sequence of images (e.g., sky images). The irradiance predictor processor may include a cloud classifier module (18) configured to classify respective pixels of an image of a cloud to indicate a solar irradiance-passing characteristic of at least a portion of the cloud. A cloud motion predictor (22) may be configured to predict motion of the cloud over a time horizon. An event predictor (24) may be configured to predict over the time horizon occurrence of a solar obscuration event. The prediction of the solar obscuration event may be based on the predicted motion of the cloud. The event predictor may include an irradiance variation prediction for the obscuration event based on the solar irradiance-passing characteristic of the cloud.
摘要:
A system, method and program product for camera-based object analyses including object recognition, object detection, and/or object categorization. An exemplary embodiment of the computerized method for analyzing objects in images obtained from a camera system includes receiving image(s) having pixels from the camera system; calculating a pool of features for each pixel; then deriving either a pool of radial moment of features from the pool of features and a geometric center of the image(s) or a pool of central moments of features from the pool of features; then calculating a normalized descriptor, based on an area of the image(s) and either of the derived pool of moments of features; and then based on the normalized descriptor, a computer then either recognizes, detects, and/or categorizes an object(s) in the image(s).