摘要:
3-Prenyl-substituted-2-alkyl menaquinones are made by reacting an alkali metal salt of a 3-alkyl-4-alkoxy or aralkoxy-1-naphthol with a prenyl halide, and oxidizing the resulting 2-prenyl-3-alkyl-4-alkoxy or aralkoxy-1-naphthol to the corresponding 3-prenyl-substituted-2-alkyl menaquinone. There is also disclosed a procedure for making the alkali metal salts involving the preparation of an ether-ester and hydrogenolysis.
摘要:
3-Prenyl-substituted menaquinones are made by reacting a 3-metallo-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene with a prenyl halide, and then oxidizing the resulting 3-prenyl-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene to prepare the corresponding 3-prenyl-substituted menaquinone. The metallo substituent at the 3-position may be Li, Li/Cu, Cu or MgBr. The oxidation is advantageously conducted by the use of argentic oxide.
摘要:
3-Prenyl-substituted menaquinones are made by reacting a 3-metalo-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene with a prenyl halide, and then oxidizing the resulting 3-prenyl-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene to prepare the corresponding 3-prenyl-substituted menaquinone. The metallo substituent at the 3-position may be Li, Li/Cu, Cu or MgBr. The oxidation is advantageously conducted by the use of argenic oxide.
摘要:
3-Prenyl-substituted-2-alkyl menaquinones are made by reacting an alkali metal salt of a 3-alkyl-4-alkoxy or aralkoxy-1-naphthol with a prenyl halide, and oxidizing the resulting 2-prenyl-3-alkyl-4-alkoxy or aralkoxy-1-naphthol to the corresponding 3-prenyl-substituted-2-alkyl menaquinone. There is also disclosed a procedure for making the alkali metal salts involving the preparation of an ether-ester and hydrogenolysis.
摘要:
3-Prenyl-substituted menaquinones are made by reacting a 3-metallo-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene with a prenyl halide, and then oxidizing the resulting 3-prenyl-2-alkyl-1,4-di(alkoxy or aralkoxy) naphthalene to prepare the corresponding 3-prenyl-substituted menaquinone. The metallo substituent at the 3-position may be Li, Li/Cu, Cu or MgBr. The oxidation is advantageously conducted by the use of argentic oxide.
摘要:
Compounds and methods for inactivating pathogens in materials are described, including compositions and methods for inactivating pathogens in biological materials such as red blood cell preparations and plasma. The compounds and methods may be used to treat materials intended for in vitro or in vivo use, such as clinical testing or transfusion. The compounds are designed to specifically bind to and react with nucleic acid, and then to degrade to form breakdown products. The degradation reaction is preferably slower than the reaction with nucleic acid.
摘要:
Psoralen compound compositions are synthesized which have substitutions on the 4, 4′, 5′, and 8 positions of the psoralen, which yet permit their binding to nucleic acid of pathogens. Reaction conditions that photoactivate these bound psoralens result in covalent crosslinking to nucleic acid, thereby inactivating the pathogen. Higher psoralen binding levels and lower mutagenicity results in safer, more efficient, and reliable inactivation of pathogens. In addition to the psoralen compositions, the invention contemplates inactivating methods using the new psoralens.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion. In particular, 4' and 5' primary aminoalkyl psoralens are photoactivated in platelet preparations to inactivate pathogens.
摘要:
Psoralen compound compositions are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which yet permit their binding to nucleic acid of pathogens. Reaction conditions that photoactivate these bound psoralens result in covalent crosslinking to nucleic acid, thereby inactivating the pathogen. Higher psoralen binding levels and lower mutagenicity results in safer, more efficient, and reliable inactivation of pathogens. In addition to the psoralen compositions, the invention contemplates inactivating methods using the new psoralens.
摘要:
Psoralen compounds are synthesized which have substitutions on the 4, 4', 5', and 8 positions of the psoralen, which permit enhanced binding to nucleic acid of pathogens. Higher psoralen binding levels and lower mutagenicity are described, resulting in safer, more efficient, and reliable inactivation of pathogens in blood products. The invention contemplates inactivation methods using the new psoralens which do not compromise the function of blood products for transfusion.