摘要:
A rare earth magnet has a sintered body including: rare earth magnet particles; and a rare earth oxide being present between the rare earth magnet particles, the rare earth oxide being represented by a following general formula (I): R2O3 (I) where R is any one of terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The rare earth magnet particle is constituted by a cluster of numerous crystal grains, and an electric resistivity of the rare earth magnet is within a range from 26.0 to 75.0 μΩm.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.
摘要:
A rare earth magnet comprises rare earth magnet particles and a rare earth oxide being present between the rare earth magnet particles. The rare earth oxide is represented by a following general formula (I): R2O3 (I) where R is any one of terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
摘要:
A rare earth magnet includes rare earth magnet particles; and amorphous and/or crystalline terbium oxide present at the boundary of the rare earth magnet particles and represented by the formula: TbOn, wherein 1.5
摘要:
A Nd—Fe—B type anisotropic exchange spring magnet is produced by a method of obtaining powder of a Nd—Fe—B type rare earth magnet alloy which comprises hard magnetic phases and soft magnetic phases wherein a minimum width of the soft magnetic phases is smaller than or equal to 1 μm and a minimum distance between the soft magnetic phases is greater than or equal to 0.1 μm, obtaining a compressed powder body by compressing the powder, and obtaining the Nd—Fe—B type anisotropic exchange spring magnet by sintering the compressed powder body using a discharge plasma sintering unit.
摘要:
An exchange-spring magnet is prepared using a magnet alloy containing Ta and C in addition to Nd, Fe and B. This exchange-spring magnet uses the magnet alloy prepared by a liquid quenching method or a mechanical alloying method. Further, by subjecting the magnetic alloy having a part set in an amorphous state to heat treatment, an exchange-spring magnet exhibits good properties regarding magnetic flux density and coercive force.
摘要:
An electrical-steel-sheet formed body is provided with an opening portion into which a permanent magnet is inserted, and an outer-peripheral hardened portion formed on the electrical-steel-sheet formed body at an outer periphery side thereof for the opening portion and having a higher hardness than a remaining area of the electrical-steel-sheet formed body. The electrical-steel-sheet formed body can be used as the rotor of the built-in permanent magnet type rotary electric machine, and the built-in permanent magnet type rotary electric machine can be obtained.
摘要:
A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 μm, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 μm.
摘要:
The present invention provides a rare earth magnet superior in magnetic properties and thermal stability. In an aspect of the present invention, a production method of an alloy thin ribbon for a rare earth magnet includes a step to obtain a quenched thin ribbon by feeding a molten alloy containing praseodymium (Pr), iron (Fe), cobalt (Co), titanium (Ti), boron (B), and silicon (Si) on a rotating roll and a step to apply heat treatment to the quenched thin ribbon at a heating rate within a range of 100° to 150° C./min to crystallize the quenched thin ribbon.
摘要:
A laser peening apparatus for manufacturing a rotor using an electrical steel sheet with low iron loss for enabling high speed rotation of a motor. The laser peening apparatus includes a laser irradiating device for irradiating with a laser through a liquid the rotor made of an electrical steel sheet with low iron loss, and a drive device for moving the rotor relative to an irradiation spot of the laser so that the laser irradiates along a bridge side on an inner circumference of a magnet insertion window of the rotor.