摘要:
A fluorescent lamp has a glass container that has a phosphor layer formed on an inner surface of the glass container, and that is hermetically sealed, wherein phosphors of the phosphor layer include a blue phosphor, a green phosphor, and a red phosphor, a main luminescence peak of the blue phosphor exists in a wavelength region in a range of 430 nm to 460 nm inclusive, a half-value width of a spectrum of the main luminescence peak of the blue phosphor is less than or equal to 50 nm, a main luminescence peak of the green phosphor exists in a wavelength region in a range of 510 nm to 530 nm inclusive, a half-value width of a spectrum of the main luminescence peak of the green phosphor is less than or equal to 30 nm, and a main luminescence peak of the red phosphor exists in a wavelength region in a range of 600 nm to 780 nm inclusive, and a difference between a wavelength of the main luminescence peak of the blue phosphor and a wavelength of the main luminescence peak of the green phosphor is in a range of 70 nm to 90 nm inclusive.
摘要:
A cold cathode fluorescent lamp includes a glass bulb (16), a protective film (22) formed on an inner face of the glass bulb, and a phosphor layer (24) that overlaps the protective film and that contains blue phosphor particles (26B), green phosphor particles (26) and red phosphor particles (26). The glass bulb has been formed from soda glass, and the blue phosphor particles have been coated with a metal oxide (30). Also, the protective film is made of silica (SiO2). Since the protective film has been provided in the fluorescent lamp and since the blue phosphor particles, which readily deteriorate, have been coated with the metal oxide, a good luminance maintenance rate is obtained. In addition, although the glass bulb of the fluorescent lamp is made of soda glass, since the protective film is made of silica, the fluorescent lamp obtains an initial luminance equivalent to the initial luminance of a fluorescent lamp whose glass bulb is made of borosilicate glass.
摘要:
The orientation of fluorescent lamps is detected in a manufacturing method for a direct backlight unit that alternates orientations of adjacent fluorescent lamps. In a preparation step of the manufacturing method for the backlight unit of the present invention, a plurality of fluorescent lamps are prepared. In each of the fluorescent lamps, a length (a1) from a first sealed portion of a glass bulb (26) to a non-phosphor layer (32) area is shorter than a length (a2) from a second sealed portion to a non-phosphor layer (32) area (a1
摘要:
The orientation of fluorescent lamps is detected in a manufacturing method for a direct backlight unit that alternates orientations of adjacent fluorescent lamps. In a preparation step of the manufacturing method for the backlight unit of the present invention, a plurality of fluorescent lamps are prepared. In each of the fluorescent lamps, a length (a1) from a first sealed portion of a glass bulb (26) to a non-phosphor layer (32) area is shorter than a length (a2) from a second sealed portion to a non-phosphor layer (32) area (a1
摘要:
A discharge lamp includes a glass bulb and a pair of electrodes provided at both ends of the glass bulb. At least one of the electrodes is an external electrode formed on an outer surface of the glass bulb as a thin layer whose maximum thickness is 70 μm or less, and an end portion of the external electrode becomes smaller in thickness towards an end of the external electrode.
摘要:
A discharge lamp includes a glass bulb and a pair of electrodes provided at both ends of the glass bulb. At least one of the electrodes is an external electrode formed on an outer surface of the glass bulb as a thin layer whose maximum thickness is 70 μm or less, and an end portion of the external electrode becomes smaller in thickness towards an end of the external electrode.
摘要:
A lighting device has: a lighting circuit for lighting a plurality of hot-cathode lamps having filaments at both ends; preheating circuits for preheating the individual filaments of the hot-cathode lamps; at least one first circuit substrate arranged near filaments on one side of the hot-cathode lamps; and at least one second circuit substrate arranged near filaments on the other side of the hot-cathode lamps. The lighting circuit is packaged in either the first circuit substrate or the second circuit substrate, and the preheating circuits are packaged or wired by being divided in the first circuit substrate and the second circuit substrate.
摘要:
A light emitting device includes a set of light source units including multiple types of solid state light emitting elements having different light colors, each of the light source units comprising the same type of the solid state light emitting elements connected in series and; and an information storage unit which stores information about electrical characteristic of the set of light source units. The information stored in the information storage unit represents a relationship between a light output and a drive current in the set of light source units.
摘要:
An illumination apparatus includes: a series circuit of a thyristor and at least one load circuit connected across an AC power source; a current control circuit for adjusting an input current to be maintained at a predetermined level during a part or the whole of an ON period of the thyristor; and a short circuit for short-circuiting input ports of the load circuit to have a predetermined resistance during a part of the ON period of the thyristor and a part or the whole of an OFF period of the thyristor. The current control circuit and the short circuit are connected in parallel to the load circuit.
摘要:
A lighting device includes: a lighting unit for supplying a lighting power to a light source unit; and a controller, for controlling the lighting unit. The lighting unit has an inductor and a switching element, and a diode for flowing a flyback current of the inductor to the light source unit during an OFF period of the switching element, and the controller has a unit for intermittently driving an ON/OFF operation of the switching element by a PWM signal and a unit for driving the switching element by a frequency higher than that of the PWM signal during an ON period of the PWM signal, and when the PWM signal falls, the controller reduces a peak value of a load current flowing through the light source unit during a certain period.