摘要:
Some embodiments provide luminescent ceramics which have a lower amount of dopant than conventional luminescent ceramics. In some embodiments, the luminescent ceramic comprises a host material comprising a rare earth element and at least one rare earth dopant, wherein the rare earth dopant may be about 0.01% to 0.5% of the rare earth atoms present in the material. Some embodiments provide luminescent ceramic comprising: a polycrystalline phosphor represented by the formula (A1-xEx)3B5O12. Some embodiments provide a light-emitting device comprising a luminescent ceramic disclosed herein.
摘要:
Disclosed herein are phosphor compositions having high gadolinium concentrations. Some embodiments include a thermally stable ceramic body comprising an emissive layer, wherein said emissive layer comprises a compound represented by the formula (A1-x-zGdxDz)3B5O12, wherein: D is a first dopant selected from the group consisting of Nd, Er, Eu, Mn, Cr, Yb, Sm, Tb, Ce, Pr, Dy, Ho, Lu and combinations thereof; A is selected from the group consisting of Y, Lu, Ca, La, Tb, and combinations thereof; B is selected from the group consisting of Al, Mg, Si, Ga, In, and combinations thereof; x is in the range of about 0.20 and about 0.80; and z is in the range of about 0.001 and about 0.10. Also disclosed are thermally stable ceramic bodies that can include the composition of formula I. Methods of making the ceramic body and a lighting device including the ceramic body are also disclosed.
摘要:
Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
摘要:
A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
摘要:
Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
摘要:
One embodiment provides a method for fabricating a translucent phosphor ceramic compact comprising: heating a precursor powder to at least about 1000° C. under a reducing atmosphere to provide a pre-conditioned powder, forming an intermediate compact comprising the pre-conditioned powder and a flux material, and heating the intermediate compact under a vacuum to a temperature of at least about 1400° C. In another embodiment, the compact may be a cerium doped translucent phosphor ceramic compact comprising yttrium, aluminum, oxygen, and cerium sources. Another embodiment may be a light emitting device having the phosphor translucent ceramic provided as described herein.
摘要:
Disclosed herein are phosphor compositions having high gadolinium concentrations. Some embodiments include a thermally stable ceramic body comprising an emissive layer, wherein said emissive layer comprises a compound represented by the formula (A1-x-zGdxDz)3B5O12, wherein: D is a first dopant selected from the group consisting of Nd, Er, Eu, Mn, Cr, Yb, Sm, Tb, Ce, Pr, Dy, Ho, Lu and combinations thereof; A is selected from the group consisting of Y, Lu, Ca, La, Tb, and combinations thereof; B is selected from the group consisting of Al, Mg, Si, Ga, In, and combinations thereof; x is in the range of about 0.20 to about 0.80; and z is in the range of about 0.001 to about 0.10. Also disclosed are thermally stable ceramic bodies that can include the composition of formula I. Methods of making the ceramic body and a lighting device including the ceramic body are also disclosed.
摘要:
A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
摘要:
One embodiment provides a method for fabricating a translucent phosphor ceramic compact comprising: heating a precursor powder to at least about 1000° C. under a reducing atmosphere to provide a pre-conditioned powder, forming an intermediate compact comprising the pre-conditioned powder and a flux material, and heating the intermediate compact under a vacuum to a temperature of at least about 1400° C. In another embodiment, the compact may be a cerium doped translucent phosphor ceramic compact comprising yttrium, aluminum, oxygen, and cerium sources. Another embodiment may be a light emitting device having the phosphor translucent ceramic provided as described herein.
摘要:
Disclosed herein are emissive ceramic materials having a dopant concentration gradient along a thickness of a yttrium aluminum garnet (YAG) region. The dopant concentration gradient may include a maximum dopant concentration, a half-maximum dopant concentration, and a slope at or near the half-maximum dopant concentration. The emissive ceramics may, in some embodiments, exhibit high internal quantum efficiencies (IQE). The emissive ceramics may, in some embodiments, include porous regions. Also disclosed herein are methods of make the emissive ceramic by sintering an assembly having doped and non-doped layers.