摘要:
An alloy having a low melting point for liquid-phase diffusion bonding capable of bonding both Ni-based heat resistance alloy material and Fe-based steel material. The alloy comprises in atom percent (%): 22
摘要:
A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an α-γ transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to α-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001} , {116} , and {223} directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z=(A+0.97B)/0.98C is satisfied.
摘要:
Steel sheet having a high {222} plane integration comprising steel sheet having an Al content of less than 6.5 mass % characterized by one or both of (1) a {222} plane integration of one or both of an αFe phase and γFe phase with respect to the steel sheet surface being 60% to 99% and (2) a {200} plane integration of one or both of an αFe phase and γFe phase with respect to the steel sheet surface being 0.01% to 15%.
摘要:
On at least one surface of a base metal plate (1) of an α-γ transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
摘要:
A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an α-γ transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to α-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001} , {116} , and {223} directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z =(A+0.97B)/0.98C is satisfied.
摘要:
On at least one surface of a base metal plate (1) of an α-γ transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
摘要:
The present invention provides an iron-base amorphous alloy thin strip excellent in soft magnetic properties, an iron core manufactured by using said thin strip, and a mother alloy for producing a rapidly cooled and solidified thin strip. More specifically, the present invention is an iron-base amorphous alloy thin strip produced by rapidly cooling and solidifying molten metal by ejecting it onto a moving cooling substrate through a pouring nozzle having a slot-shaped opening, characterized by having an ultra-thin oxide layer of a thickness in the range from 5 to 20 nm on one or both of the surfaces of the amorphous mother phase containing P in the range from 0.2 to 12 atomic %.
摘要:
The object of the present invention is to provide an Fe-based amorphous alloy thin strip capable of realizing an excellent soft magnetic property for use in alternating current applications while keeping a high magnetic flux density even in a composition range with a high Fe content, and an Fe-based amorphous alloy thin strip with which a core having an excellent soft magnetic property can be manufactured, even if there occurs a temperature difference among different portions of the core during annealing. The present invention is an Fe-based amorphous alloy thin strip having a high magnetic flux density, consisting of the main component elements of Fe, Si, B, C, and P and unavoidable impurities, characterized by having: a composition, in atomic %, of 82
摘要:
To solve the problem of capturing the strip leading edge for improving the success rate of coiling and to eliminate the complicated recovery of the coiled strip for improving the productivity, a process of online-coiling a quench-solidified magnetic strip produced by ejecting a liquid metal or metal alloy onto a moving cooled substrate comprises the step of rotating a coiling roll having a magnetized surface to coil the strip therearound, at a coiling roll surface speed within the range of not less than 90% and less than 100% of a moving speed of the substrate, upon starting the coiling.
摘要:
The present invention provides a Fe—B—Si system amorphous alloy thin strip excellent in high magnetic flux density, thermal stability, amorphous formability improved workability and low core loss. The present invention further provides a Fe—B—Si system amorphous alloy thin strip which has the reduced cost without using high purity iron resources such as an electrolytic iron as iron resources used in an amorphous alloy thin strip, and also has core loss less than 0.10 W/kg at W13/50 in soft magnetic property in alternating-current field. The Fe—B—Si system amorphous alloy thin strip according to the present invention contains an appropriate amounts of N, C, P to improve thermal stability, amorphous formability, workability (brittleness), and core loss without deteriolating magnetic flux density, and contains, in atomic %, B: 5-25%, Si: 1-30%, N: 0.001-0.2%, C: 0.003-10%, P: 0.001-0.2% and the balance being Fe and unavoidable impurities, and optionally contains Co or Ni substituted to less than 15% of the Fe amount, or Cr at less than 5% substituted to the Fe amount. Further, Mn: 0.15-0.5 mass %, S: 0.004-0.05 mass % can be included.