摘要:
The present invention provides a Fe—B—Si system amorphous alloy thin strip excellent in high magnetic flux density, thermal stability, amorphous formability improved workability and low core loss. The present invention further provides a Fe—B—Si system amorphous alloy thin strip which has the reduced cost without using high purity iron resources such as an electrolytic iron as iron resources used in an amorphous alloy thin strip, and also has core loss less than 0.10 W/kg at W13/50 in soft magnetic property in alternating-current field. The Fe—B—Si system amorphous alloy thin strip according to the present invention contains an appropriate amounts of N, C, P to improve thermal stability, amorphous formability, workability (brittleness), and core loss without deteriolating magnetic flux density, and contains, in atomic %, B: 5-25%, Si: 1-30%, N: 0.001-0.2%, C: 0.003-10%, P: 0.001-0.2% and the balance being Fe and unavoidable impurities, and optionally contains Co or Ni substituted to less than 15% of the Fe amount, or Cr at less than 5% substituted to the Fe amount. Further, Mn: 0.15-0.5 mass %, S: 0.004-0.05 mass % can be included.
摘要:
The present invention provides a Fe—B—Si system amorphous alloy thin strip excellent in high magnetic flux density, thermal stability, amorphous formability improved workability and low core loss. The present invention further provides a Fe—B—Si system amorphous alloy thin strip which has the reduced cost without using high purity iron resources such as an electrolytic iron as iron resources used in an amorphous alloy thin strip, and also has core loss less than 0.10 W/kg at W13/50 in soft magnetic property in alternating-current field. The Fe—B—Si system amorphous alloy thin strip according to the present invention contains an appropriate amounts of N, C, P to improve thermal stability, amorphous formability, workability (brittleness), and core loss without deteriolating magnetic flux density, and contains, in atomic %, B: 5-25%, Si: 1-30%, N: 0.001-0.2%, C: 0.003-10%, P: 0.001-0.2% and the balance being Fe and unavoidable impurities, and optionally contains Co or Ni substituted to less than 15% of the Fe amount, or Cr at less than 5% substituted to the Fe amount. Further, Mn: 0.15-0.5 mass %, S: 0.004-0.05 mass % can be included.
摘要:
A method for supplying molten metal alloy for producing thin amorphous metal wire or thin amorphous metal strip by liquid quenching and solidification on a moving cooling substrate controls the flow of molten metal from a ladle into a tundish. The ladle has a long nozzle with an interior passage for providing flow of molten metal alloy into the tundish. The ladle stopper has a distal end region received by the interior passage of the long nozzle. Control of the overlap between the distal end region of the ladle stopper received in the long nozzle during molten alloy flow and control of the sectional flow area provided in the long nozzle interior passage controls the flow quantity of molten alloy from the ladle into the tundish.
摘要:
The present invention provides liquid phase diffusion bonding alloy foils capable of bonding in an oxidizing atmosphere, which can ensure joints with a homogeneous structure and adequate tensile strength in air in a short period of time using various alloys or Fe-based materials as materials to be bonded; specifically, they are Ni-based liquid phase diffusion bonding alloy foils with compositions comprising as essential components in terms of atomic percent, the diffusion elements B or P at 1.0-20.0% or B and P each at 1.0-20.0%, and Si at 0.5 to ≦15% or 0.5 to
摘要:
A method for supplying molten metal alloy for producing thin amorphous metal wire or thin amorphous metal strip by liquid quenching and solidification on a moving cooling substrate controls the flow of molten metal from a ladle into a tundish. The ladle has a long nozzle with an interior passage for providing flow of molten metal alloy into the tundish. The ladle stopper has a distal end region received by the interior passage of the long nozzle. Control of the overlap between the distal end region of the ladle stopper received in the long nozzle during molten alloy flow and control of the sectional flow area provided in the long nozzle interior passage controls the flow quantity of molten alloy from the ladle into the tundish.
摘要:
The present invention provides an Fe-based alloy foil for liquid phase diffusion bonding of Fe-based material by enabling bonding in oxidizing atmospheres at relatively high bonding temperatures to minimize thermal influence on the base material (the material to be bonded) and, thereby, ensures production of a bonded joint having a uniform microstructure and a good bonded joint strength and enables reduction in the bonding time. The Fe-based alloy foil contains, as essential elements, one of 1.0 to 20.0% P and 1.0 to 20.0% B, 1.0 to 20.0% Si, and 0.1 to 20.0% V, in terms of atomic percentage, the balance substantially of Fe and unavoidable impurities, and has a thickness of 3.0 to 100 .mu.m. Alternatively, the Fe-based alloy foil contains, as essential elements, 1.0 to 20.0% P, 1.0 to 20.0% Si, and 0.1 to 20.0% V, and 1.0 to 20.0% B, in terms of atomic percentage, the balance substantially of Fe and unavoidable impurities, and has a thickness of 3.0 to 200 .mu.m. In accordance with need, one or more of Cr, Ni and Co and/or one or more of W, Nb and Ti are also contained in suitable amounts. The foil advantageously has a substantially amorphous crystallographic structure.
摘要:
A high-purity ferroboron contains 0.02 mass % or more of P and 0.03 mass % or less of Al, with the balance Fe, B and unavoidable impurities. The high-purity ferroboron may further contain 0.03 mass % or less of Ti.
摘要:
A high-purity ferroboron contains 0.02 mass % or more of P and 0.03 mass % or less of Al, with the balance Fe, B and unavoidable impurities. The high-purity ferroboron may further contain 0.03 mass % or less of Ti.
摘要:
An amorphous metal alloy strip having enhanced magnetic properties consisting essentially of a composition mainly composed of Fe, Si, B, C and P having the formula (Fe.sub.a Si.sub.b B.sub.c C.sub.d).sub.100-x P.sub.x, wherein "a", "b", "c" and "d" are atomic percentages ranging from 70 to 86, 1 to 19, 7 to 20 and 0.02 to 4, respectively, with the proviso that the sum of "a", "b", "c" and "d" is equal to 100, and "x" is a weight percentage ranging from 0.003 to 0.1, said alloy strip having a thickness of 40 to 90 .mu.m and a width of not less than 20 mm. This amorphous metal alloy strip can be produced by a sinle-roll or twin-roll process under a specific cooling condition.
摘要:
An alloy having a low melting point for liquid-phase diffusion bonding capable of bonding both Ni-based heat resistance alloy material and Fe-based steel material. The alloy comprises in atom percent (%): 22