摘要:
To enhance the activation of a catalyst comprising an alloy of platinum and cobalt, thereby providing an electrode catalyst for fuel cell whose battery output and fuel efficiency are high, and thereby providing a production process of the same.An electrode catalyst according to the present invention for fuel cell is an electrode catalyst for fuel cell in which catalytic particles comprising platinum and cobalt are loaded on a conductive support, and is characterized in that a compositional (molar) ratio of said catalytic particles is platinum:cobalt=3:1-5:1: In the range of platinum:cobalt=3:1-5:1, a high battery voltage is obtainable. When the proportion of platinum is less than platinum: cobalt=3:1, the elution of cobalt from out of catalyst increases. On the contrarily, when the proportion of platinum is more than platinum: cobalt=5:1, the catalytic activities become low.
摘要:
To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less.A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
摘要:
To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less.A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
摘要:
A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
摘要:
A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
摘要:
An object of the present invention is to further increase the rate of Pt particles (Pt utilization rate) for three-phase interfaces in order to reduce the amount of catalytic metal such as Pt used for fuel cells. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein an average particle size of the carried catalytic metal particles is larger than an average pore size of micropores in the conductive carrier.
摘要:
An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30mL/g·Pt.
摘要:
A fuel cell catalyst in which catalyst particles are supported on a carrier is provided, wherein the value of the average catalyst carrier pore diameter/the catalyst metal (PGM) particle diameter is 0.5 to 1.8. Such fuel cell catalyst is less likely to cause voltage drops even after being used for a long period of time.
摘要:
An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30 mL/g·Pt.
摘要:
A flooding phenomenon is suppressed in a high current density loading region so as to attempt the improvement of cell performance of fuel cells. An electrode catalyst for fuel cells, in which a catalyst comprising an alloy catalyst composed of a noble metal and one or more transition metals and having surface characteristics such that it shows a pH value in water of 6.0 or more is supported on conductive carriers, and a fuel cell using such electrode catalyst for fuel cells, are provided.