摘要:
A catalyst for purifying exhaust gas, which is a relatively cheap three-way-catalyst containing noble metal components, and is capable of suppressing sintering of the noble metals even at high temperature, and purifying a carbon monoxide (CO), a hydrocarbon (HC) and a nitrogen oxide (NOx), and is superior, in particular, in purifying the nitrogen oxide, along with a method for purifying exhaust gas. This catalyst is provided by a honeycomb structure-type catalyst having a carrier made of a honeycomb-type structure, coated with a catalyst composition in two or more layers, for purifying a carbon monoxide, a hydrocarbon and a nitrogen oxide contained in exhaust gas, characterized in that; a catalyst layer (A) at the upper layer side comprises a palladium component supported with a heat resistant inorganic oxide, an oxygen storage release material and a barium component, and a catalyst layer (B) at the lower layer side comprises a rhodium component supported with a cerium-zirconium-type composite oxide having a cerium/zirconium ratio by weight of 0.05 to 0.2, as converted to an oxide, or the like.
摘要:
A nanofiber manufacturing apparatus for fabricating nanofibers from a raw material liquid by electrostatic explosions includes a housing internally having an electrospinning space in which nanofibers are fabricated, and a support structure for supporting an electrospinning head including nozzles for ejecting the raw material liquid into the electrospinning space. The support structure is fittable to and removable from the housing and is enabled to self-stand in a state of having been removed from the housing.
摘要:
A nanofiber production device produces nanofibers by stretching, in a space, a solution. The nanofiber production device includes: an effusing body which effuses the solution into the space by centrifugal force; a driving source which rotates the effusing body; a supplying electrode which is placed at a predetermined distance from the effusing body and supplies charge to the solution via the effusing body; a charging electrode to which a potential of reverse polarity to a polarity of the effusing body is applied, with the charging electrode being placed at a predetermined distance from the effusing body; and a charging power source which applies a predetermined voltage between the supplying electrode and the charging electrode.
摘要:
In a nanofiber manufacturing apparatus (1) which produces nanofibers by electrically stretching a solution in space, a hollow supporting unit (32) which is rotated around an axial line AL by a motor (41) supports a cartridge (33) which supplies a solution (20) stored therein, a pressurizing member (38) is pressurized by air introduced through a rotary joint (43) so that the solution (20) flows into an interior space (34a) of an effusing body (34) which is rotated together with the supporting body (32), and the solution (20) is radially effused from effusing holes (34c) by the pressure of the air and centrifugal force due to the rotation of the effusing body (34).
摘要:
A method for manufacturing a fine polymer including: generating superheated steam by a superheated steam generating unit (101); adjusting the pressure of the generated superheated steam by a pressure adjusting unit (102); receiving a polymer by a reception unit (103); heating the received polymer to a predetermined temperature by a heating unit (104); discharging the heated polymer through a first discharge port (111); and discharging the superheated steam through a second discharge port (121) at the same time as the time when the heated polymer is discharged. Here, the second discharge port (121) surrounds the first discharge port (111), and the first discharge port (111) and the second discharge port (121) face the same direction.
摘要:
Provided is a nanofiber manufacturing apparatus including an effusing body (115) having an effusing hole (118) which allows the solution (300) to effuse in a given direction, a charging electrode (128) which is conductive and is disposed at a given distance from the effusing body (115), a charging power supply (122) configured to apply a given voltage between the effusing body (115) and the charging electrode (128), and a determining unit (102) configured to determine a flight path of the solution (300) and the nanofibers such that a length of the flight path C is longer than a shortest path length B which is a length of a shortest imaginary path connecting an end opening (119) of the effusing hole (118) and an accumulation part A on which the nanofibers (301) are accumulated.
摘要:
A nanofiber production device (100) produces nanofibers (301) by stretching, in space, a solution (300). The nanofiber production device (100) includes: an effusing body (115) which effuses the solution (300) into the space by centrifugal force; a driving source (117) which rotates the effusing body (115); a supplying electrode (124) which is placed at a predetermined distance from the effusing body (115) and supplies charge to the solution (300) via the effusing body (115); a charging electrode (121) to which a potential of reverse polarity to a polarity of the effusing body (115) is applied, the charging electrode (121) is placed at a predetermined distance from the effusing body (115); and a charging power source (122) which applies a predetermined voltage between the supplying electrode (124) and the charging electrode (121).
摘要:
An optical disc apparatus includes a laser diode for emitting a laser light, a beam splitter for dividing the laser light into a main beam and sub beam, a main photodetector for detecting the main beam to output a main push-pull signal, a sub photodetector for detecting the sub beam to output a sub push-pull signal, and a subtracter for calculating the main and sub push-pull signals to output a differential push-pull signal, in which an amplification degree of the sub push-pull signal is adjusted so that a DC offset on the differential push-pull signal is adjusted, even in the case where a laser intensity is varied.
摘要:
Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
摘要:
A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid (300), which is a raw material of nano-fibers (301), into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid (300) and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers (301) by having the electrically'charged and sprayed raw material liquid (300) explode electrostatically, a carried material electrically charging step that electrically charges a carried material (302) carried on the nano-fibers (301) with a polarity opposite to a polarity of the electrically charged nano-fibers (301), and a mixing step that mixes the said manufactured nano-fibers (301) and the electrically charged carried material (302) in a space.