摘要:
A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein.
摘要:
A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein.
摘要:
A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas i01 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein.
摘要:
A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein.
摘要:
[Object] To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas.[Means of Solution] A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein. This CO2 recovery system further includes an absorbent-treating section 23 disposed downstream of the at least one water-washing section 22 through which the decarbonated flue gas 101A flows. The absorbent-treating section 23 allows the decarbonated flue gas 101A to come into contact with circulating acidic water 105 to further reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A.
摘要:
Provided is a method for easily manufacturing large volumes of a metallic glass nanowire with an extremely small diameter. This metallic glass nanowire manufacturing method is characterized in that a melted metallic glass or a master alloy thereof is gas-atomized in a supercooled state.
摘要:
Bipolar semiconductor devices have a Zener voltage controlled very precisely in a wide range of Zener voltages (for example, from 10 to 500 V). A bipolar semiconductor device has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, a silicon carbide conductive layer of a first conductivity type, a highly doped layer of a second conductivity type and a silicon carbide conductive layer of a second conductivity type which substrate and conductive layers are laminated in the order named.
摘要:
In a SiC bipolar semiconductor device with a mesa structure having a SiC drift layer of a first conductive type and a SiC carrier injection layer of a second conductive type that are SiC epitaxial layers grown from a surface of a SiC single crystal substrate, the formation of stacking faults and the expansion of the area thereof are prevented and thereby the increase in forward voltage is prevented. Further, a characteristic of withstand voltage in a reverse biasing is improved. An forward-operation degradation preventing layer is formed on a mesa wall or on a mesa wall and a mesa periphery to separate spatially the surface of the mesa wall from a pn-junction interface. In one embodiment, the forward-operation degradation preventing layer is composed of a silicon carbide low resistance layer of a second conductive type that is equipotential during the application of a reverse voltage. In another embodiment, the forward-operation degradation preventing layer is composed of a silicon carbide conductive layer of a second conductive type, and a metal layer that is equipotential during the application of a reverse voltage is formed on a surface of the silicon carbide conductive layer. In still another embodiment, the forward-operation degradation preventing layer is composed of a high resistance amorphous layer.
摘要:
A silicon carbide Zener diode is a bipolar semiconductor device that has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, formed thereon, a silicon carbide conductive layer of a first conductivity type, and a silicon carbide conductive layer of a second conductivity type formed on the silicon carbide conductive layer of a first conductivity type, wherein a depletion layer that is formed under reverse bias at a junction between the silicon carbide conductive layer of a first conductivity type and the silicon carbide conductive layer of a second conductivity type does not reach a mesa corner formed in the silicon carbide conductive layer of a first conductivity type.
摘要:
There is disclosed an inkjet recording apparatus including a feeding device, a remover, and an inkjet head. The feeding device feeds a recording medium along a feed path passing through a removing area. A part of an opposingly-feeding surface extends opposed to the ink jet head and along the feed path, and the removing area is located under the opposingly-feeding surface and within the opposingly-feeding surface as seen in a vertical direction. The remover removes foreign matter from a surface of the recording medium during the recording medium is fed through the removing area by the feeding device. The inkjet head is disposed downstream of the remover with respect to a feeding direction in which the recording medium is fed. The inkjet head has an ink ejection surface in which a nozzle is open, and an ink droplet is ejected from the nozzle toward a recording surface of the recording medium while the recording medium is fed along at least a part of the opposingly-feeding surface.