摘要:
A main liquid chamber communicates with a first auxiliary liquid chamber and a second auxiliary liquid chamber via a first limiting passage and a second limiting passage, respectively. The first and second auxiliary liquid chambers are located adjacent first and second air chambers via first and second diaphragms, respectively. As a solenoid valve is changed over, the second air chamber is made to communicate with the negative pressure of an engine or with the atmospheric pressure. The second liquid chamber is disposed in a hollow cylindrical member. When frequencies of vibrations are below a predetermined frequency, the negative pressure of the engine is transmitted to the second air chamber, causing the second diaphragm to be brought into close contact with and fixed to an inner wall of the second air chamber. As a result, a liquid passing through the first limiting passage absorbs the vibrations. When the frequencies of the vibrations become high, the first limiting passage becomes incapable of absorbing the vibrations, and the atmospheric pressure is imparted to the second air chamber. For this reason, the second diaphragm becomes deformable, so that the liquid passes through the second limiting passage to absorb the vibrations.
摘要:
A vibration isolation apparatus comprises a first auxiliary fluid chamber communicating through a first restricted path with a main fluid chamber and a second auxiliary fluid chamber communicating through a second restricted path with the main fluid chamber. The second restricted path has electrode plates whose power supply condition is controlled by a control unit. Further, an electric viscous fluid is filled in the main fluid chamber, the first and second auxiliary fluid chambers, and the first and second restricted paths. When shake vibration is generated, the electrode plates are energized by the control unit so that none of the electric viscous fluid flows through the second restricted path. The electric viscous fluid causes a resonance of the fluid, and has flow resistance in the first restricted path to absorb the shake vibration. Idle vibration sets the first restricted path in the loading condition to prevent the electric viscous fluid from flowing through the restricted path. On the other hand, the electric viscous fluid flows through the second restricted path so that a resonance of the fluid is caused in the second restricted path to decrease the dynamic spring constant and absorb the idle vibration.
摘要:
A main liquid chamber communicates with a first auxiliary liquid chamber and a second auxiliary liquid chamber via a first limiting passage and a second limiting passage, respectively. The first and second auxiliary liquid chambers are located adjacent first and second air chambers via first and second diaphragms, respectively. As a solenoid valve is changed over, the second air chamber is made to communicate with the negative pressure of an engine or the with atmospheric pressure. The second liquid chamber is disposed in a hollow cylindrical member. When frequencies of vibrations are below a predetermined frequency, the negative pressure of the engine is transmitted to the second air chamber, causing the second diaphragm to be brought into close contact with and fixed to an inner wall of the second air chamber. As a result, a liquid passing through the first limiting passage absorbs the vibrations. When the frequencies of the vibrations become high, the first limiting passage becomes incapable of absorbing the vibrations, and the atmospheric pressure is imparted to the second air chamber. For this reason, the second diaphragm becomes deformable, so that the liquid passes through the second limiting passage to absorb the vibrations. In addition, a third auxiliary liquid chamber and accompanying third limiting passage can be provided to absorb high-frequency vibrations. The length of this third limiting passage is made shorter than that of the second limiting passage and the resonance of the liquid in the third limiting passage is made higher than that in the second limiting passage.
摘要:
A main liquid chamber communicates with a first auxiliary liquid chamber and a second auxiliary liquid chamber via a first limiting passage and a second limiting passage, respectively. The first and second auxiliary liquid chambers are located adjacent first and second air chambers via first and second diaphragms, respectively. As a solenoid valve is changed over, the second air chamber is made to communicate with the negative pressure of an engine or with the atmospheric pressure. The second liquid chamber is disposed in a hollow cylindrical member. When frequencies of vibrations are below a predetermined frequency, the negative pressure of the engine is transmitted to the second air chamber, causing the second diaphragm to be brought into close contact with and fixed to an inner wall of the second air chamber. As a result, a liquid passing through the first limiting passage absorbs the vibrations. When the frequencies of the vibrations become high, the first limiting passage becomes incapable of absorbing the vibrations, and the atmospheric pressure is imparted to the second air chamber. For this reason, the second diaphragm becomes deformable, so that the liquid passes through the second limiting passage to absorb the vibrations.
摘要:
A vibration damping apparatus which is particularly applicable to an automotive engine mount and capable of fully absorbing vibration from vibration generating sources. A sleeve is secured to the automotive engine unit, and a housing is secured to the vehicle body. Once the vibration generated by the automotive engine is transmitted to the sleeve, liquid loaded in a main liquid chamber flows to a sub liquid chamber via a plurality of restricting passages. Vibration is effectively absorbed by the transit resistance against liquid flowing through those restricting passages. Independent of these restricting passages, a cylindrical member is provided which penetrates through the housing and a partition wall block. The cylindrical member is disposed in the path of the restricting passages providing connection between the main and sub liquid chambers. A hollow rotor is rotatably provided, inside of and on the same axial line as the cylindrical member, for opening and closing the restricting passages. When low-frequency vibration is generated, only the restricting passage devoid of the hollow rotor provides connection between the main and sub liquid chambers. Conversely, when high-frequency vibration is generated, those restricting passages each containing the hollow rotor and having a large sectional area are released to provide connection between both chambers thus reliably and effectively absorbing vibrations throughout an extensive range of frequencies.
摘要:
A vibration isolating apparatus includes an inner cylinder supported by one of a vibration producing portion and a vibration receiving portion; an outer cylinder supported by the other and disposed around an outer periphery of the inner cylinder in such a manner as to surround the inner cylinder; a liquid chamber provided between the inner cylinder and the outer cylinder and partitioned into a main liquid chamber and an auxiliary liquid chamber; an orifice passage for allowing the main liquid chamber and the auxiliary liquid chamber to communicate with each other; an electrorheological fluid filled in the liquid chamber; and a pair of electrode plates provided in the orifice passage and adapted to apply an electric field to the electrorheological fluid so as to change the viscosity of the electrorheological fluid. Hence, the electric field applied to the electrorheological fluid undergoes a change as the amount of electric current supplied to the electrode plates is changed, thereby changing the viscosity of the electrorheological fluid in the orifice passage.
摘要:
A vibration isolating apparatus interposed between a vibration-occurring portion and a vibration-receiving portion includes a liquid chamber partitioned into a plurality of small liquid chambers, an orifice allowing the small chambers to communicate with each other, and an electroviscous fluid filled in the liquid chamber and the orifice. Disposed in the liquid chamber are a movable plate for partitioning the liquid chamber, a groove portion for accomodating a peripheral edge of the movable plate in such a manner as to be movable in a thicknesswise direction of the movable plate by a predetermined amount, and a pair of electrodes for imparting an electric field to the electroviscous fluid in the groove portion. Hence, when the vibration isolating apparatus receives low-frequency vibrations, the pair of electrodes are energized to increase the viscosity of the electroviscous fluid between the electrodes, allowing the movable plate to be secured in the groove.
摘要:
A vibration isolation apparatus comprises an outer cylinder connected to one of a vibration producing portion and a vibration receiving portion, an inner cylinder connected to the other of the vibration producing portion and the vibration receiving portion, and an elastic member which is disposed between the outer cylinder and the inner cylinder and which deforms when vibration is generated. The vibration isolation apparatus further comprises a unit having both a plurality of restricted paths and a rotary apparatus able to open and close at least one of the restricted paths. Thus, the restricted paths and the rotary apparatus are housed in a unit. As a result, assembly of the vibration isolation apparatus can be improved.
摘要:
A liquid-sealed type vibration isolator has a resilient member disposed between the a mounting member, connected to one of a vibration-generating portion and a vibration-receiving portion, and a second mounting member, connected to the other one of the vibrator-generating portion and the vibrator-receiving portion, and the resilient member is adapted to undergo deformation during occurrence of vibrations. A pressure-receiving liquid chamber is disposed in such a manner as to be capable of expanding and shrinking by using the resilient member as a portion of a partition wall thereof. A limiting passageway allows the pressure-receiving liquid chamber and the auxiliary liquid chamber to communicate with each other. A vibrating element is supported by one of the first mounting member and the second mounting member via a resilient supporting member in such a manner as to be movable along a predetermined axis, and the vibrating element constitutes a portion of another partition wall of the pressure-receiving liquid chamber so as to be subjected to the hydraulic pressure of the pressure-receiving liquid chamber. A solenoid has a coil and a plunger adapted to move the vibrating element in one of two predetermined directions along the axis. A spring urges the vibrating element in the other one of the two predetermined directions.
摘要:
A covering member is used as a transparent protective member for protecting solar cells of a solar battery. The covering member includes a transparent high-sunproof film, a transparent high-moistureproof film laminated on the transparent high-sunproof film, and ethylene-vinyl acetate copolymer adhesive disposed between the transparent high-sunproof film and the transparent high-moistureproof film. The high-moistureproof film is formed of two transparent polyethylene terephthalate films and inorganic oxide coatings coated on the respective films. The inorganic oxide coatings are formed of silica and/or alumina, and coating surfaces thereof are bonded to each other. The ethylene-vinyl acetate copolymer adhesive contains ultraviolet absorbing agent and organic peroxide as a cross-linking agent.