摘要:
A power MOSFET comprises: a semiconductor substrate 21 of a first conduction type; a drain layer 22 of the first conduction type and formed on a surface layer of the substrate; a gate insulating film 25 formed in a partial region on the drain layer 22; a gate electrode 26 formed on the gate insulating film 25; an insulating film 27 formed on the gate electrode; a side wall insulator 28 formed on side walls of the gate insulating film 25, the gate electrode 26, and the insulating film 27; a recess formed on the drain layer 22 and in a region other than a region where the gate electrode 25 and the side wall insulator 28 are formed; a channel layer 23 of a second conduction type opposite to the first conduction type and formed in a range from the region where the recess is formed to a vicinity of the region where the gate electrode 26 is formed; a source region layer 24 of the one conduction type and formed on the channel layer 23 outside the recess; and a wiring layer 29 formed to cover the channel layer 23 which is exposed through the recess, the side wall insulator 28, and the insulating film.
摘要:
A power MOSFET comprises: a semiconductor substrate 21 of a first conduction type; a drain layer 22 of the first conduction type and formed on a surface layer of the substrate; a gate insulating film 25 formed in a partial region on the drain layer 22; a gate electrode 26 formed on the gate insulating film 25; an insulating film 27 formed on the gate electrode; a side wall insulator 28 formed on side walls of the gate insulating film 25, the gate electrode 26, and the insulating film 27; a recess formed on the drain layer 22 and in a region other than a region where the gate electrode 25 and the side wall insulator 28 are formed; a channel layer 23 of a second conduction type opposite to the first conduction type and formed in a range from the region where the recess is formed to a vicinity of the region where the gate electrode 26 is formed; a source region layer 24 of the one conduction type and formed on the channel layer 23 outside the recess; and a wiring layer 29 formed to cover the channel layer 23 which is exposed through the recess, the side wall insulator 28, and the insulating film.
摘要:
A power MOSFET comprises: a semiconductor substrate 21 of a first conduction type; a drain layer 22 of the first conduction type and formed on a surface layer of the substrate; a gate insulating film 25 formed in a partial region on the drain layer 22; a gate electrode 26 formed on the gate insulating film 25; an insulating film 27 formed on the gate electrode; a side wall insulator 28 formed on side walls of the gate insulating film 25, the gate electrode 26, and the insulating film 27; a recess formed on the drain layer 22 and in a region other than a region where the gate electrode 25 and the side wall insulator 28 are formed; a channel layer 23 of a second conduction type opposite to the first conduction type and formed in a range from the region where the recess is formed to a vicinity of the region where the gate electrode 26 is formed; a source region layer 24 of the one conduction type and formed on the channel layer 23 outside the recess; and a wiring layer 29 formed to cover the channel layer 23 which is exposed through the recess, the side wall insulator 28, and the insulating film.
摘要:
A first conductivity layer and a first insulating film are successively formed on a channel layer, and a photoresist film is formed on the first insulating film. The photoresist film is selectively exposed to light using a photomask and patterned. Using the patterned photoresist film as a mask, the first insulating film and the first conductivity layer are etched to form source electrodes from the first conductivity layer. Using the first insulating film and the source electrodes as a mask, an impurity of one conductivity type is diffused into exposed portions of the channel layer to form source regions. A second insulating film is formed in covering relation to side walls and upper surfaces of the source electrodes. Using the second insulating film as a mask, the channel layer and the common drain layer are etched to form trenches in the source regions, the channel layer, and the common drain layer. A third insulating film is formed on surfaces of the trenches, and a second conductive layer is formed as a gate electrode on the entire surface so as to fill up the trenches and cover the second insulating film.
摘要:
The present invention improves the characteristic of a trench-type vertical MOSFET. When a trench 23 serving as a gate 25 is formed, it is made in a shape of “&ggr;” which is convex toward the inside of the trench. Thus, the surface area of the trench is reduced so that both gate-source capacitance and gate-drain capacitance can be reduced, thereby shortening the switching time of the MOSFET.
摘要:
The present invention improves the characteristic of a trench-type vertical MOSFET. When a trench 23 serving as a gate 25 is formed, it is made in a shape of ".gamma." which is convex toward the inside of the trench. Thus, the surface area of the trench is reduced so that both gate-source capacitance and gate-drain capacitance can be reduced, thereby shortening the switching time of the MOSFET.
摘要:
A channel layer is formed in a surface of a semiconductor substrate, and a plurality of trenches are formed in the surface of the semiconductor substrate, the trenches being deeper than the channel layer. Then, gate electrodes are formed in the trenches, respectively, after which body layers are formed between the trenches and source layers are formed adjacent to the trenches.
摘要:
A capacity layer is formed of non-doped polysilicon. Unlike capacity layers formed of an oxide film, generation of seams and the like can be suppressed and thereby a stable capacity layer can be formed. Moreover, polysilicon used as a capacity layer may be doped polysilicon, and an oxide film formed on the surface of the polysilicon also serves as a capacity film. Thus, provision of an insulated gate device featuring low capacity is made possible.
摘要:
An interlayer dielectric film is completely buried in a trench, and failures caused by step coverage is prevented because a source electrode can be formed substantially uniformly on an upper portion of a gate electrode. Also, in the processes of forming a source region, a body region and an interlayer dielectric film, only one mask is necessary so that the device size is reduced to account for placement error of only one mask alignment.
摘要:
A capacity layer is formed of non-doped polysilicon. Unlike capacity layers formed of an oxide film, generation of seams and the like can be suppressed and thereby a stable capacity layer can be formed. Moreover, polysilicon used as a capacity layer may be doped polysilicon, and an oxide film formed on the surface of the polysilicon also serves as a capacity film. Thus, provision of an insulated gate device featuring low capacity is made possible.