摘要:
There is provided a gas sensor element, including a solid electrolyte layer, a pair of sensor electrodes arranged on a front side of the solid electrolyte layer, a pair of sensor leads arranged on a rear side of the solid electrolyte layer and connected to the respective sensor electrodes; and insulating layers, one of which is arranged between one of the sensor leads and the solid electrolyte layer and the other of which is arranged between the other sensor lead and the solid electrolyte layer. The sensor electrodes have rear end portions located on the insulating layers and overlapping front end portions of the sensor leads, respectively. The sensor leads are denser than the sensor electrodes and have front ends located in the same positions as or positions rear of front ends of the insulating layers, respectively. There is also provided a gas sensor with such a gas sensor element.
摘要:
A photosensitive resin composition is provided, which has properties necessary for a solder resist (insulative property, solder heat resistance, alkali developability and the like) and is capable of forming a film that is excellent in folding endurance even after the IR reflow process. A flexible circuit board employing the photosensitive resin composition and a circuit board production method are also provided. The photosensitive resin composition comprises: (A) a linear polymer of an ethylenically unsaturated compound comprising a carboxyl-containing ethylenically unsaturated compound; (B) an epoxy resin; (C) a polymerizable compound containing an ethylenically unsaturated group; and (D) a photopolymerization initiator. The photosensitive resin composition has a tensile breaking elongation percentage of not less than 10% and a 2% weight loss temperature of not lower than 260° C. after being cured.
摘要:
A halogen-free and flame-resistant photosensitive resin composition is provided, which has properties necessary for a solder resist (insulative property, solder heat resistance, alkali developability and the like) and is capable of forming a film that is excellent in folding endurance even after an IR reflow process. A flexible circuit board employing the photosensitive resin composition and a circuit board production method are also provided. The photosensitive resin composition comprises: (A) a linear polymer of an ethylenically unsaturated compound comprising a carboxyl-containing ethylenically unsaturated compound; (B) an epoxy resin; (C) a polymerizable compound containing an ethylenically unsaturated group; (D) a photopolymerization initiator; and a cyclic phosphazene (E) represented by the following general formula (1):
摘要:
The invention relates to a dicing die-bonding film having a pressure-sensitive adhesive layer (2) on a substrate material (1) and a die-bonding adhesive layer (3) on the pressure-sensitive adhesive layer (2), wherein the adhesion of the pressure-sensitive adhesive layer (2) to the die-bonding adhesive layer (3), as determined under the conditions of a peel angle of 15° and a peel point moving rate of 2.5 mm/sec. at 23° C., is different between a region (2a) corresponding to a work attachment region (3a) and a region (2b) corresponding to a part or the whole of the other region (3b), in the die-bonding adhesive layer (3), and satisfies the following relationship: adhesion of the pressure-sensitive adhesive layer (2a)
摘要:
A halogen-free and flame-resistant photosensitive resin composition is provided, which has properties necessary for a solder resist (insulative property, solder heat resistance, alkali developability and the like) and is capable of forming a film that is excellent in folding endurance even after an IR reflow process. A flexible circuit board employing the photosensitive resin composition and a circuit board production method are also provided. The photosensitive resin composition comprises: (A) a linear polymer of an ethylenically unsaturated compound comprising a carboxyl-containing ethylenically unsaturated compound; (B) an epoxy resin; (C) a polymerizable compound containing an ethylenically unsaturated group; (D) a photopolymerization initiator; and a cyclic phosphazene (E) represented by the following general formula (1):
摘要:
A method for manufacturing a gas sensor element (300), which includes a plate-like second solid electrolyte member (109), a fourth electrode (110) formed on the second solid electrolyte member (109), and a protection layer (111) including a reinforcement member (112) having an insertion hole (112a), and a porous electrode protection member (113a) provided in the insertion hole (112) and adapted to protect the fourth electrode (110) from becoming poisoned. The method includes a pressing step of, after disposing a green electrode protection member (113a) in the insertion hole (112a) of a green reinforcement member (112), pressing at least one of the green reinforcement member (112) and the green electrode protection member (113a) so as to form a green protection layer (111); a laminate-forming step of arranging the green protection layer (111) and a green solid electrolyte member (113a) in layers so as to form a laminate which will become the gas sensor element (300) after being fired; and a firing step of firing the laminate.
摘要:
A polycrystalline silicon substrate for a solar cell formed by growing a high purity polycrystalline silicon layer on a surface of a base obtained by slicing a polycrystalline silicon ingot obtained by melting metallurgical grade silicon and performing one-direction solidification, wherein one-direction solidification is performed on a melt prepared by adding B to molten metallurgical grade silicon at an amount of 2×1018 cm−3 to 5×1019 cm−3 based on the concentration in the melt to produce the polycrystalline silicon ingot. With this structure, it is possible to easily obtain a polycrystalline silicon substrate having resistivity and the type of conductivity suitable for manufacture of a solar cell.
摘要翻译:一种用于太阳能电池的多晶硅衬底,其通过在通过熔化冶金级硅获得的多晶硅锭切片并进行单向凝固而获得的基底表面上生长高纯度多晶硅层而形成,其中执行单向凝固 在通过以2×10 18 cm -3至5×10 19 cm -3的量向熔融冶金级硅中加入B制备的熔体上, 3,根据熔体中的浓度制造多晶硅锭。 利用这种结构,可以容易地获得具有电阻率的多晶硅基板和适合制造太阳能电池的导电类型。
摘要:
In a liquid phase growth process comprising immersing a substrate in a melt held in a crucible, a crystal material having been dissolved in the melt, and growing a crystal on the substrate, at least a group of substrates to be immersed in the melt held in the crucible are fitted to the supporting rack at a position set aside from the center of rotation of the crucible or supporting rack, and the crystal is grown on the surface of the substrate thus disposed. This can provide a liquid phase growth process which can attain a high growth rate, can enjoy uniform distribution of growth rate in each substrate and between the substrates even when substrates are set in a large number in one batch, and can readily keep the melt from reaction and contamination even when the system has a large size, and provide a liquid phase growth system suited for carrying out the process.
摘要:
A dicing/die-bonding film including a pressure-sensitive adhesive layer (2) on a supporting base material (1) and a die-bonding adhesive layer (3) on the pressure-sensitive adhesive layer (2), wherein a releasability in an interface between the pressure-sensitive adhesive layer (2) and the die-bonding adhesive layer (3) is different between an interface (A) corresponding to a work-attaching region (3a) in the die-bonding adhesive layer (3) and an interface (B) corresponding to a part or a whole of the other region (3b), and the releasability of the interface (A) is higher than the releasability of the interface (B). The dicing/die-bonding film is excellent in balance between retention in dicing a work and releasability in releasing its diced chipped work together with the die-bonding adhesive layer.
摘要:
A liquid phase growth method is provided which comprises dipping a seed substrate in a solution in a vessel having a crystal raw material melted therein and growing a crystal on the substrate, wherein a fin is provided on a bottom of the vessel, for regulating a flow of the solution from a central portion outside in a radial direction in the vessel; a flow-regulating plate is provided in the vicinity of an inner sidewall of the vessel, for regulating a flow of the solution from the bottom upwardly; and the vessel is rotated while regulating a flow of the solution by an action of the fin and the flow-regulating plate to bring the solution into contact with the seed substrate. Thus, there is provided a liquid phase growth method and apparatus capable of providing a high growth rate and showing little difference in the growth rate among the substrates or within the same substrate even when a number of substrates are charged in one batch.