摘要:
The present specification discloses a polymer electrolyte fuel cell characterized in that each of the cathode and the anode comprises catalyst particles, a hydrogen ion-conductive polymer electrode, a conductive porous base material and a water repellent agent, and water repellency of at least one of the cathode and the anode varies in a direction of thickness or in a plane direction. As such, by varying the degree of the water repellency of the cathode and the anode on the basis of a position, an excellent polymer electrolyte fuel cell having a high discharge characteristic or more specifically a high current-voltage characteristic in a high current density range.
摘要:
A polymer electrolyte fuel cell comprising an anode, a cathode, a polymer electrolyte membrane interposed between the anode and the cathode, an anode-side separator plate having a gas flow path to supply fuel gas to the anode and a cathode-side separator plate having a gas flow path to supply oxidant gas to the cathode. Each of the anode and the cathode comprises a catalyst layer in contact with the polymer electrolyte membrane, an electrode supporting material having gas permeability and electronic conductivity, and a water repellent layer interposed between the catalyst layer and the electrode supporting material. The water repellent layer has through holes through which the catalyst layer and the electrode supporting material are electrically connected.
摘要:
The present invention provides a polymer electrolyte fuel cell having an increased reaction area by forming a gas channel, a proton channel and an electron channel very close to each other inside a catalyst layer. This polymer electrolyte fuel cell includes a hydrogen ion conductive polymer electrolyte membrane; and a pair of electrodes having catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers, in which the catalyst layer of at least one of the electrodes comprises carbon particles supporting a noble metal catalyst, and the carbon particles include at least two kinds of carbon particles adsorbing a hydrogen ion conductive polymer electrolyte in mutually different dispersed states.
摘要:
By using a gas diffusion layer for a fuel cell comprising a fabric comprising a warp thread and a weft thread which are made of carbon fiber, wherein the distance X between adjacent intersections where the warp and weft threads cross each other and the thickness Y of the fabric satisfy the equation: 1.4≦X/Y≦3.5, the present invention reduces the surface asperities of the substrate and prevents a micro short-circuit resulting from the piercing of the polymer electrolyte membrane of the fuel cell by the carbon fibers of the fabric so as to improve the characteristics of the fuel cell. In order to further prevent the piercing of the polymer electrolyte membrane by the carbon fibers of the gas diffusion layer substrate, the rough surface of the carbon fabric is smoothed by: (1) applying a clamping pressure of 1 to 20 kgf/cm2 to the contact area between each electrode and each conductive separator plate of the fuel cell; or (2) heating the gas diffusion layer surface before the gas diffusion layer is disposed onto the polymer electrolyte membrane.
摘要翻译:通过使用包括由碳纤维制成的包括经线和纬纱的织物的燃料电池用气体扩散层,其中,经线和纬线彼此交叉的相邻交点之间的距离X和 织物满足以下等式:1.4 <= X / Y <= 3.5,本发明减小了基板的表面粗糙度,并且防止了燃料电池的聚合物电解质膜被碳纤维刺穿导致的微短路 织物,以改善燃料电池的特性。 为了进一步防止高分子电解质膜被气体扩散层基板的碳纤维刺穿,碳纤维织物的粗糙表面通过以下方式进行平滑化:(1)施加1〜20kgf / cm·SUP > 2 SUP>到燃料电池的每个电极和每个导电隔板之间的接触面积; 或者(2)在将气体扩散层配置在高分子电解质膜上之前加热气体扩散层表面。
摘要:
By using a gas diffusion layer for a fuel cell comprising a fabric comprising a warp thread and a weft thread which are made of carbon fiber, wherein the distance X between adjacent intersections where the warp and weft threads cross each other and the thickness Y of the fabric satisfy the equation: 1.4≦X/Y≦3.5, the present invention reduces the surface asperities of the substrate and prevents a micro short-circuit resulting from the piercing of the polymer electrolyte membrane of the fuel cell by the carbon fibers of the fabric so as to improve the characteristics of the fuel cell.In order to further prevent the piercing of the polymer electrolyte membrane by the carbon fibers of the gas diffusion layer substrate, the rough surface of the carbon fabric is smoothed by: (1) applying a clamping pressure of 1 to 20 kgf/cm2 to the contact area between each electrode and each conductive separator plate of the fuel cell; or (2) heating the gas diffusion layer surface before the gas diffusion layer is disposed onto the polymer electrolyte membrane.
摘要翻译:通过使用包括由碳纤维制成的包括经线和纬纱的织物的燃料电池用气体扩散层,其中,经线和纬线彼此交叉的相邻交点之间的距离X和 织物满足以下等式:1.4 <= X / Y <= 3.5,本发明减小了基板的表面粗糙度,并且防止了燃料电池的聚合物电解质膜被碳纤维刺穿导致的微短路 织物,以改善燃料电池的特性。 为了进一步防止高分子电解质膜被气体扩散层基材的碳纤维刺穿,碳纤维织物的粗糙表面通过以下方式进行平滑化:(1)施加1〜20kgf / cm·SUP > 2 SUP>到燃料电池的每个电极和每个导电隔板之间的接触面积; 或者(2)在将气体扩散层配置在高分子电解质膜上之前加热气体扩散层表面。
摘要:
The present invention provides a polymer electrolyte fuel cell having an increased reaction area by forming a gas channel, a proton channel and an electron channel very close to each other inside a catalyst layer. This polymer electrolyte fuel cell includes a hydrogen ion conductive polymer electrolyte membrane; and a pair of electrodes having catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers, in which the catalyst layer of at least one of the electrodes comprises carbon particles supporting a noble metal catalyst, and the carbon particles include at least two kinds of carbon particles adsorbing a hydrogen ion conductive polymer electrolyte in mutually different dispersed states.
摘要:
The present invention provides a polymer electrolyte fuel cell having an increased reaction area by forming a gas channel, a proton channel and an electron channel very close to each other inside a catalyst layer. This polymer electrolyte fuel cell includes a hydrogen ion conductive polymer electrolyte membrane; and a pair of electrodes having catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers, in which the catalyst layer of at least one of the electrodes comprises carbon particles supporting a noble metal catalyst, and the carbon particles include at least two kinds of carbon particles adsorbing a hydrogen ion conductive polymer electrolyte in mutually different dispersed states.
摘要:
The present invention provides a gas diffusion layer for a fuel cell which has proper rigidity, is easy to handle and contributes to the improvement of the productivity of fuel cells. A method for producing a gas diffusion layer for a fuel cell including a first step of: impregnating a conductive porous substrate made of a conductive carbon fiber cloth or conductive carbon fiber felt with a first dispersion containing a first fluorocarbon resin having thermoplasticity; and baking the first conductive porous substrate at a first baking temperature of not less than the melting point of the first fluorocarbon resin and less than the decomposition temperature of the first fluorocarbon resin to enhance the rigidity of the conductive porous substrate.
摘要:
The present invention provides a gas diffusion layer for a fuel cell which has proper rigidity, is easy to handle and contributes to the improvement of the productivity of fuel cells. A method for producing a gas diffusion layer for a fuel cell including a first step of: impregnating a conductive porous substrate made of a conductive carbon fiber cloth or conductive carbon fiber felt with a first dispersion containing a first fluorocarbon resin having thermoplasticity; and baking the first conductive porous substrate at a first baking temperature of not less than the melting point of the first fluorocarbon resin and less than the decomposition temperature of the first fluorocarbon resin to enhance the rigidity of the conductive porous substrate.
摘要:
A carbon fiber woven fabric for use as a gas diffusion layer base material in a polymer electrolyte fuel cell has a surface that is smoothed and further optimized to inhibit non-uniform infiltration of a coating for water-repellent-layer formation, to provide an electrolyte membrane-electrode assembly suitable for operation under a high humidification condition. The gas diffusion layer base material may be a carbon fiber woven fabric, wherein a ratio of the area of gap portions where neither warp thread nor weft thread exists: (10/W−Y)(10/Z−X) to the area of portions where warp thread is crossing weft thread: XY mm2 is in the range of about 1/1500 to about 1/5, where the carbon fiber woven fabric has a warp density of Z threads/cm, a weft density of W threads/cm, a warp thickness of X mm and a weft thickness of Y mm.