摘要:
The present invention provides a gas diffusion layer for a fuel cell which has proper rigidity, is easy to handle and contributes to the improvement of the productivity of fuel cells. A method for producing a gas diffusion layer for a fuel cell including a first step of: impregnating a conductive porous substrate made of a conductive carbon fiber cloth or conductive carbon fiber felt with a first dispersion containing a first fluorocarbon resin having thermoplasticity; and baking the first conductive porous substrate at a first baking temperature of not less than the melting point of the first fluorocarbon resin and less than the decomposition temperature of the first fluorocarbon resin to enhance the rigidity of the conductive porous substrate.
摘要:
The present invention provides a gas diffusion layer for a fuel cell which has proper rigidity, is easy to handle and contributes to the improvement of the productivity of fuel cells. A method for producing a gas diffusion layer for a fuel cell including a first step of: impregnating a conductive porous substrate made of a conductive carbon fiber cloth or conductive carbon fiber felt with a first dispersion containing a first fluorocarbon resin having thermoplasticity; and baking the first conductive porous substrate at a first baking temperature of not less than the melting point of the first fluorocarbon resin and less than the decomposition temperature of the first fluorocarbon resin to enhance the rigidity of the conductive porous substrate.
摘要:
The present specification discloses a polymer electrolyte fuel cell characterized in that each of the cathode and the anode comprises catalyst particles, a hydrogen ion-conductive polymer electrode, a conductive porous base material and a water repellent agent, and water repellency of at least one of the cathode and the anode varies in a direction of thickness or in a plane direction. As such, by varying the degree of the water repellency of the cathode and the anode on the basis of a position, an excellent polymer electrolyte fuel cell having a high discharge characteristic or more specifically a high current-voltage characteristic in a high current density range.
摘要:
In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
摘要:
A polymer electrolyte fuel cell is provided comprising: a hydrogen ion conductive polymer electrolyte membrane; an anode and a cathode sandwiching the hydrogen ion conductive polymer electrolyte membrane; an anode side electroconductive separator having a gas channel for supplying a fuel gas to the anode; a cathode side electroconductive separator having a gas channel for supplying an oxidant gas to the cathode; characterized in that the anode and the cathode comprise a gas diffusion layer and a catalyst layer formed on the gas diffusion layer at the side in contact with the hydrogen ion conductive polymer electrolyte membrane, the catalyst layer has catalyst particles and a hydrogen ion conductive polymer electrolyte, and at least either of hydrogen ion conductivity and gas permeability of at least either of the anode and the cathode varies in a thickness direction of the anode or the cathode.
摘要:
A polymer electrolyte fuel cell is provided comprising: a hydrogen ion conductive polymer electrolyte membrane; an anode and a cathode sandwiching the hydrogen ion conductive polymer electrolyte membrane; an anode side electroconductive separator having a gas channel for supplying a fuel gas to the anode; a cathode side electroconductive separator having a gas channel for supplying an oxidant gas to the cathode; characterized in that the anode and the cathode comprise a gas diffusion layer and a catalyst layer formed on the gas diffusion layer at the side in contact with the hydrogen ion conductive polymer electrolyte membrane, the catalyst layer has catalyst particles and a hydrogen ion conductive polymer electrolyte, and at least either of hydrogen ion conductivity and gas permeability of at least either of the anode and the cathode varies in a thickness direction of the anode or the cathode.
摘要:
The present invention restores the performance of a fuel cell by: operating the cell in a loaded current mode different from that of a normal operation for a predetermined time; supplying an oxidant gas and a fuel gas to an anode and a cathode respectively and outputting a current from a cell body with the polarity being inverted; supplying a pressurized gas to at least one of the cathode and anode in an amount not less than 1.5 times as much as that in the normal operation or supplying oxygen to the cathode; or injecting a cleaning solution into the cathode and anode through a gas flow path. Consequently, it is possible to effectively restore a degraded performance of a polymer electrolyte fuel cell caused by a long operation.
摘要:
The present invention provides a polymer electrolyte fuel cell stack that includes an inlet manifold that distributes supplies of the gaseous fuel, the oxidant gas, and cooling water in a sequence of lamination from a unit cell on one end of the cell laminate to a unit cell on the other end of the cell laminate and an outlet manifold that discharges exhausts of the gaseous fuel, the oxidant gas, and the cooling water in an inverted sequence of lamination from the unit cell on the other end of the cell laminate to the unit cell on the one end of the cell laminate. This configuration actualizes a small-sized, compact fuel cell stack.
摘要:
The present invention provides a polymer electrolyte fuel cell having a small-sized, light-weighted mechanism for fastening a stack of unit cells assembly. The polymer electrolyte fuel cell of the present invention includes a stack of unit cells obtained by laying a plurality of unit cells one upon another; a first end plate disposed on one end of the stack of unit cells; a second end plate arranged on the other end of the stack of unit cells; an auxiliary plate disposed at least outside the first end plate; at least one set of restraining means, each of which has a band-like shape and restrains a first member located on one end of an assembly, which includes the stack of unit cells, the first and the second end plates, and the auxiliary plate, and a second member located on the other end of the assembly to restrict separation of the first member and the second member from each other; a screw fitted in a threaded hole formed in the auxiliary plate in such a manner that an end of the screw comes into contact with the first end plate; and compressive means that generates a repulsive force to compress the stack of unit cells when the screw is fitted in the threaded hole of the auxiliary plate.
摘要:
A polymer electrolyte fuel cell stack that includes a cell laminate having a plurality of unit cells, which are laid one upon another and each of which includes a polymer electrolyte membrane, a pair of electrodes arranged across the polymer electrolyte membrane and having respective catalytic reaction layers, a separator having means for feeding a supply of fuel gas containing hydrogen gas to one of the electrodes, another separator having means for feeding a supply of oxidant gas to the other of the electrodes, and a manifold for feeding the supply of fuel gas or the supply of oxidant gas to the respective electrode and disposed on a side face of each unit cell. In the polymer electrolyte fuel cell stack, a sealing portion is disposed at least in the vicinity of each electrode. The polymer electrolyte fuel cell stack has excellent durability and productivity. Gasket sealing portions, a sealing portion for cooling water, and sealing portions for water and gas in an internal humidifying unit are composed of a polymer compound that has polyisobutylene as the backbone structure. This arrangement ensures high reliability.