摘要:
A work mounting apparatus according to the present invention comprises a rotating drum divided into upper and lower drums, a head unit arranged on the outer periphery of the rotating drum or the lower drum, a circular work head attached to the head unit, and a suction nozzle protruding from the outer peripheral surface of the work head toward a workbench. While the lower drum is rotating, the suction nozzle of the work head repeats cycloid motion along the workbench with its posture or orientation kept fixed with respect to the workbench. While repeating the cycloid motion, the nozzle receives a work from a work feeder of the workbench by suction, and mounts the work on a printed board on the workbench. The work mounting apparatus further includes a balance weight for the work head, and a friction brake for applying a frictional force to the turning shaft of the work head, to thereby stabilize the turning motion of the work head.
摘要:
A method and an apparatus for carrying a workpiece for improving efficiency in a workpiece carrying operation. In the apparatus, a moving member having a workpiece holding member is driven with a linear motion in a horizontal plane along a carrier passage, and the workpiece holding member is driven with a revolutional motion in a vertical plane around a revolution axis displaced from a center of the workpiece holding member, while the workpiece holding member maintains an orientation in which a holder holding the workpiece points downwards. The holder of the workplece holding member is controlled to sequentially carry out holding of the workpiece and releasing of the workpiece at lowest positions of the workpiece holding member in the revolutional motion, so as to realize a continuous workpiece carrying operation.
摘要:
A work mounting apparatus or component mounting apparatus according to the present invention comprises a lower drum of a rotating drum, a head unit arranged on the outer periphery of the lower drum, a circular work head or component head attached to the head unit, and a suction nozzle protruding from the outer peripheral surface of the work head toward a workbench. While the lower drum is rotating, the suction nozzle of the work head repeats cycloid motion along the workbench with its posture kept fixed with respect to the workbench. While repeating the cycloid motion, the nozzle receives a work or component, such as an electronic component from a work feeder of the workbench by suction, and mounts the work on a printed board on the workbench. The work head is rotated for a predetermined rotational angle during the process in which the suction nozzle moves from the work feeder toward the printed board after the work is received, or in the process in which the nozzle moves from the printed board toward the work feeder after the work is mounted. Thus, the region for the cycloid motion of the suction nozzle is upwardly separated from the workbench.
摘要:
In a parts mounting apparatus, suction nozzles are mounted on a rotating carrier driven by a motor. With rotation of the rotating carrier, parts are sucked by the nozzles at a feed station and carried to a mounting station where the parts such as electronic parts are mounted on substrates, for example. A counter counts output pulses from an encoder mounted in the motor driving the rotating carrier. A microcomputer determines the rotational speed and rotational position of the rotating carrier from the count value of the counter. Based on the result of the determination, the microcomputer calculates a timing for delivering a signal for switching the nozzles between two different pneumatic states.
摘要:
In a parts mounting apparatus, a suction nozzle is caused to perform a cycloid movement. A part such as an electronic part is sucked into the nozzle at one of bottom dead points of the cycloid movement and mounted onto another component such as a circuit substrate at the other or another bottom dead point. In compensation of the position of the nozzle at the bottom dead point, the nozzle is also caused to perform the cycloid movement. The position of the nozzle at the bottom dead point is monitored by a monitoring camera so that an amount of deviation of the position of the nozzle from the bottom dead point is obtained. The phase of the cycloid movement is compensated so that the amount of deviation of the nozzle is rendered zero. Alternatively, the part sucked in the nozzle positioned at the bottom dead point is monitored by the monitoring camera.
摘要:
A method and an apparatus for workpiece installation capable of carrying out workpiece installation operation without a stopping of a rotational motion of a rotatable table member. In the apparatus, rotatable drum is continuously rotated while workpiece carrier member, provided along a circumference of the rotatable drum, for carrying a workpiece from a workpiece supply station to a workpiece installation station, which is capable of spinning on the circumference while carrying the workpiece, is controlled such that the workpiece carrier member spins while the rotatable drum rotates so as to move along a prescribed trajectory which is preferably a cycloidal or quasi-cycloidal trajectory, and that the workpiece is picked up by the workpiece carrier member at a prescribed pick-up position on the workpiece supply station and released at a prescribed installation position on the workpiece installation station.
摘要:
In a control device for controlling a servo motor driving a robot arm, a target position command signal is input to a first operation section, which generates a speed command value for the speed feedforward. The target position command signal is also input to a delay section. A target position command signal delayed by a time period is obtained by the delay section and supplied to a second operation section. A positional deviation between the target position command signal and a position feedback signal is calculated by the second operation section. The obtained positional deviation is input to a third operation section and generated as a speed compensation command signal. A speed command signal obtained by addition of the speed feedforward signal and the speed compensation command signal is supplied to a servo driver for driving the servo motor. As a result, the time lag in the response of a system of the controlled system after the servo driver can be compensated for and an error in the positional deviation or the speed command signal can be prevented from being increased.
摘要:
The present invention is directed to an inverter-type resistance welding machine. A PWM inverter supplies high frequency primary voltage to a transformer. A microprocessor controls the PWM inverter by proportional-integral-deviation (PID) control through a PWM control unit. The microprocessor determines a feedforward operation amount which corresponds to a desired welding current value before current is supplied to the welding electrodes. The time period for the calculation of an integral operation amount is effectively reduced to approximately zero by employing a calculated integral operation amount from a previous sampling.
摘要:
A welder apparatus has many welder assemblies. Each of welder assemblies is formed of a weld control transformer (WCT) to which a welding gun is attached, and a weld control unit (WCU) integrally but detachably connected to the WCT. The feature of the detachable connection between the WCT and the WCU provides a compact size for each of WCT and WCU. This feature also permits a standardized connection dimension and standardized connection interface between the WCT and the WCU for all welder assemblies. These standardized connection dimension and interface allow an optional combination of any of WCT's and any of WCU's, and plural assemblies of this combination can be managed by a single host computer (or machine control interface MCI). Further, no connection cables are required between the WCT and the WCU for all welder assemblies.
摘要:
This invention is a diode defect detecting device including a current detector for detecting the primary current of a transformer, a comparator for comparing the detection current detected by the current detector with a current reference and outputting a reset signal if the detection current is larger than the current reference, an oscillator for generating a clock signal, a flip-flop circuit for receiving a set signal on the basis of a front and an end edge of the clock signal generated by the oscillator and receiving the output reset signal from the comparator, a polarity changing circuit for outputting a polarity changing signal for changing the polarities of the plurality of diodes on the basis of the output clock signal from the flip-flop circuit, and a determination circuit for calculating, in order to detect malfunctions of the plurality of diodes, any impedance change on the secondary side viewed from the primary side of the transformer on the basis of the pulse width of each polarity of the output clock signal from the flip-flop circuit.