摘要:
A wind power generation system 10 of an embodiment includes a rotor 40 having a hub 41 and blades 42, a nacelle 31 pivotally supporting the rotor 40, a tower 30 supporting the nacelle 31, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, and a discharge power supply 65 capable of applying a voltage between the electrodes of the airflow generation device 60. Further, the system includes a measurement device detecting information related to at least one of output in the wind power generation system 10, torque in the rotor 40 and a rotation speed of the blades 42, and a control unit 110 controlling the discharge power supply 65 based on an output from the measurement device.
摘要:
According to the present invention, there is provided a wind power generating system, having a plurality of plasma airflow generating units, each including a first electrode and a second electrode arranged being separated from the first electrode with a dielectric film and generating plasma airflow owing to dielectric barrier discharge when voltage is applied between the first electrode and the second electrode; and at least one plasma power source which supplies voltage to the plasma airflow generating units, wherein the plasma airflow generating units are arranged at a blade of the wind power generating system and are supplied with voltage as being separated into a plurality of lines separately for each of the lines.
摘要:
A wind power generation system 10 of an embodiment includes a rotor 40 having a hub 41 and blades 42, a nacelle 31 pivotally supporting the rotor 40, a tower 30 supporting the nacelle 31, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, and a discharge power supply 65 capable of applying a voltage between the electrodes of the airflow generation device 60. Further, the system includes a measurement device detecting information related to at least one of output in the wind power generation system 10, torque in the rotor 40 and a rotation speed of the blades 42, and a control unit 110 controlling the discharge power supply 65 based on an output from the measurement device.
摘要:
An airflow control device 10 in an embodiment includes: a vortex shedding structure portion 20 discharging an airflow flowing on a surface in a flow direction as a vortex flow; and a first electrode 40 and a second electrode 41 disposed on a downstream side of the vortex shedding structure portion 20 via a dielectric. By applying a voltage between the first electrode 40 and the second electrode 41, flow of the airflow on the downstream side of the vortex shedding structure portion 20 is controlled.
摘要:
An airflow control device 10 in an embodiment includes: a vortex shedding structure portion 20 discharging an airflow flowing on a surface in a flow direction as a vortex flow; and a first electrode 40 and a second electrode 41 disposed on a downstream side of the vortex shedding structure portion 20 via a dielectric. By applying a voltage between the first electrode 40 and the second electrode 41, flow of the airflow on the downstream side of the vortex shedding structure portion 20 is controlled.
摘要:
A wind power generation system 10 of an embodiment includes a rotor 40 having blades 42, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, a discharge power supply 65 applying a voltage between the electrodes of the airflow generation device 60, and a control unit 110 controlling the discharge power supply 65. The control unit 110 controls the voltage to perform pulse modulation so that the value of a relational expression fC/U is 0.1 or larger and 9 or smaller where f is a pulse modulation frequency of the voltage, C is a chord length of the blades 42, and U is a relative velocity combining a peripheral velocity of the blades 42 and a wind velocity, so as to generate plasma induced flow.
摘要翻译:一个实施例的风力发电系统10包括具有叶片42的转子40,设置在每个叶片42的前缘中的气流发生装置60,并且具有通过电介质分离的第一电极61和第二电极62 ,在气流发生装置60的电极之间施加电压的放电电源65和控制放电电源65的控制单元110.控制单元110控制电压进行脉冲调制,使得关系式 fC / U为0.1以上且9以下,f是电压的脉冲调制频率,C是叶片42的弦长,U是组合叶片42的圆周速度的相对速度和风速 ,以产生等离子体感应流。
摘要:
A wind power generation system 10 of an embodiment includes a rotor 40 having blades 42, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, a discharge power supply 65 applying a voltage between the electrodes of the airflow generation device 60, and a control unit 110 controlling the discharge power supply 65. The control unit 110 controls the voltage to perform pulse modulation so that the value of a relational expression fC/U is 0.1 or larger and 9 or smaller where f is a pulse modulation frequency of the voltage, C is a chord length of the blades 42, and U is a relative velocity combining a peripheral velocity of the blades 42 and a wind velocity, so as to generate plasma induced flow.
摘要翻译:一个实施例的风力发电系统10包括具有叶片42的转子40,设置在每个叶片42的前缘中的气流发生装置60,并且具有通过电介质分离的第一电极61和第二电极62 ,在气流发生装置60的电极之间施加电压的放电电源65和控制放电电源65的控制单元110.控制单元110控制电压进行脉冲调制,使得关系式 fC / U为0.1以上且9以下,f是电压的脉冲调制频率,C是叶片42的弦长,U是组合叶片42的圆周速度的相对速度和风速 ,以产生等离子体感应流。
摘要:
In one embodiment, a steam device includes a high-temperature member and a low-temperature member. One surface of the high-temperature member is exposed to high-temperature steam, and the other surface is cooled by cooling steam having a temperature lower than the high-temperature steam. The low-temperature member is disposed to face the high-temperature member with a passage for the cooling steam therebetween and is formed of a material having a heat resistance lower than that of the high-temperature member. The steam device has at least one high-reflectance film selected from a first high-reflectance film, which is formed on the surface of the high-temperature member which is exposed to the high-temperature steam and has a higher reflectance with respect to infrared rays than the high-temperature member, and a second high-reflectance film, which is formed on the surface of the low-temperature member facing the high-temperature member and has a higher reflectance with respect to infrared rays than the low-temperature member.
摘要:
A ceramic composite material comprises a ceramic material constituting a matrix, and dispersion particles disposed in the matrix in a dispersing manner. A specific shape of a ceramic composite material is, for instance, a sinter or a thermally sprayed layer. The dispersion particles are consisting of a composite oxide including at least one kind of a first metallic element selected from alkaline earth metals such as Mg and Ca, and at least one kind of a second metallic element selected from W, Ti, Ta, Mo, Nb, V, B, Te, Ge and Si, for instance, are composite oxide particles precipitated by reacting a compound containing a first metallic element and a compound including a second metallic element through heat treatment. The precipitated particles consisting of such a composite oxide can be dispersed as planar particles or acicular particles in the ceramic layer to which, for instance, thermal spraying is applied. The dispersion particles suppress deterioration of strength or toughness of the oxide based ceramic material under high temperature atmosphere.
摘要:
A substrate has a semiconductor-on-insulator structure. The substrate has a base substrate, an insulator layer provided on the base substrate, an active substrate provided on the insulator layer and having gettering sites, and an active layer provided on the active substrate and made of a semiconductor. The gettering sites under the active layer eliminate crystal defects and impurities generated in the active layer during the semiconductor device production in which elements are formed in the active layer.