Abstract:
A correlation between a CT value and a water equivalent thickness ratio distribution for each patient can be corrected without increasing a treatment time, and more accurate treatment can be realized. A treatment planning system 112 which generates a treatment plan for irradiating an irradiation target with a particle beam calculates a correction amount of a water equivalent thickness ratio of a first treatment plan created in advance, calculates a water equivalent thickness ratio distribution based on the correction amount and the first treatment plan, and creates a second treatment plan from the water equivalent thickness distribution.
Abstract:
A radiation therapy planning apparatus performs dose calculation at high speed and with high accuracy for radiation therapy in a scanning irradiation method. The apparatus includes a display, an arithmetic processing apparatus, a memory, and a data server, which is connected to a particle beam irradiation apparatus. A dose calculation unit of the arithmetic processing apparatus calculates dose distribution by a simplified Monte Carlo algorithm, and corrects the dose distribution by a decreasing rate stored in a particle number decreasing rate table of the memory, and stores the corrected dose distribution in an integrated dose distribution table. By using the simplified Monte Carlo algorithm and the particle number decreasing rate that corrects the simplified Monte Carlo algorithm, the dose distribution is calculated, and thereby, it is possible to realize a radiation therapy planning apparatus that performs dose calculation at a high speed with high accuracy.
Abstract:
There is provided a particle therapy system including: a particle beam generator for generating a particle beam; an irradiation nozzle arranged in a treatment room and irradiating a target with the particle beam; a particle beam transport system 6 communicating the particle beam generator with the irradiation nozzle; an X-ray imaging device arranged in the treatment room and imaging the position of the target through irradiation with X-rays; a dosimeter 8 arranged at a position passed by the particle beam in the irradiation nozzle; and a control apparatus 400 performing control to exclude the measurement result of the X-rays from the measurement result obtained using the dosimeter 8 when the X-rays are emitted during treatment.
Abstract:
A radiation measuring device having a plurality of sensors configured to generate charges in response to the radiation includes a signal processing device. The signal processing device uses an signal generated by a proton beam irradiation device upon changing of beam energy and causes accumulation values of charges output from the sensors to be separately stored in a main control device for each value of the energy. The main control device calculates depth dose profiles for values of the beam energy from the accumulation values stored in the main control device and representing the charges. The main control device calculates a range of the beam for each of the values of the beam energy from the depth dose profiles, corrects the depth dose profiles for the values of the beam energy using a correction coefficient that depends on the range and sums the corrected depth dose profiles.
Abstract:
A treatment planning system is configured to create a treatment planning for radiotherapy and includes a processing device and a memory. The memory stores a plurality of calculation models, and the processing device uses at least two of the plurality of calculation models to calculate calculation values of biological effect indices representing an effect of radiotherapy with respect to a condition for radiotherapy, and searches for the condition so that at least two of the calculation values to be calculated approach a predetermined target value.
Abstract:
Provided are a radiation treatment planning system and a radiation treatment system that are capable of achieving time shortening and labor saving of treatment planning making when a radiation treatment is planned. A predicted DVH calculation portion 4034 of an arithmetic processing device 403 in a radiation treatment planning system 400 anisotropically enlarges a target region 501 in an irradiated body image which is input to the radiation treatment planning system 400, and calculates an overlap volume OV with an organ-at-risk region 502 per the number of times of enlargement. A DVH (Dose Volume Histogram) is predicted from a volume of the calculated OV, and a dose histogram in the OV per the number of times of enlargement which is calculated from a past treatment planning data group, and is displayed on a display device 401.
Abstract:
A stacked type of radiation detector and a calibration method that enables the radiation detector to correct variations in sensor-specific output easily and within a short time, without using a water-phantom dose detector. The radiation detector is equipped with a sensor section including a plurality of sensors arranged in layers in a traveling direction of a particle beam. A dummy absorber has water-equivalent thickness equal to an average water-equivalent thickness of the sensors. A signal-processing unit calculates sensor-specific calibration coefficients using a measurement result obtained during irradiation of the radiation detector with the radiation when electrical signals developed in each sensor are measured, and a measurement result obtained during irradiation of the radiation detector with the radiation when the sensor section is moved in the traveling direction of the radiation, then the dummy absorber is set in place, and electrical signals developed in each sensor are measured.
Abstract:
A treatment planning system that generates treatment planning for irradiating a target with a particle beam, includes an arithmetic processing device that sets at least two or more irradiation patterns for one treatment planning, calculates a plurality of predicted dose distributions for each irradiation pattern based on a target dose set for each region for at least one region including a region of the target, and calculates an index for evaluating validity of the irradiation pattern based on the plurality of predicted dose distributions.
Abstract:
The invention provides a particle therapy system in which whether to perform any one irradiation method of a raster scanning method and a discrete spot scanning method can also be selected based on previous selection depending on a target volume 41 of a patient 4 to be irradiated, and either of the irradiation methods of the raster scanning method and the discrete spot scanning method is configured to be capable of being performed by one irradiation apparatus 500. Therefore, a small particle therapy system capable of achieving both higher accuracy irradiation and high dose rate improvement is provided.
Abstract:
A structure configuring a ridge filter has line symmetry about a line vertical to a depth direction passing the center of the structure. A small structure obtained in such a way that the structure is divided by this line has a bilaterally asymmetric shape about a center line in an iterative direction, and has a point symmetric shape about an intersection between the center line in the iterative direction and the center line in the depth direction. Thicknesses in the iterative direction of an uppermost stream surface and a lowermost stream surface in the depth direction are equal to each other. The structure is configured so that a thick portion in the iterative direction of the uppermost stream surface and the lowermost stream surface is not present in the depth direction.