Abstract:
A liquid crystal drive device having a differential-type input circuit including a differential amplification stage for receiving a differential signal and a buffer stage for generating an output signal on the basis of an output of the differential amplification stage, the liquid crystal drive device for receiving a signal of display data via the input circuit and outputting a signal for driving a liquid crystal panel on the basis of the display data, wherein a liquid crystal driving voltage VLCD larger than a power supply voltage VCC for logic to be supplied to the operation voltage buffer stage is supplied to the differential amplification stage of the input circuit. A standby function of interrupting an operation current of the differential amplification stage in a period where no display data is received is provided.
Abstract:
A liquid crystal drive device having a differential-type input circuit including a differential amplification stage for receiving a differential signal and a buffer stage for generating an output signal on the basis of an output of the differential amplification stage, the liquid crystal drive device for receiving a signal of display data via the input circuit and outputting a signal for driving a liquid crystal panel on the basis of the display data, wherein a liquid crystal driving voltage VLCD larger than a power supply voltage VCC for logic to be supplied to the operation voltage buffer stage is supplied to the differential amplification stage of the input circuit. A standby function of interrupting an operation current of the differential amplification stage in a period where no display data is received is provided.
Abstract:
There is provided a magnetooptic device including a substrate; a semiconductor layer having a quantum well structure formed on the substrate, in which the semiconductor layer is formed by alternately laminating a well layer and a barrier layer and at least the barrier layer in those layers contains magnetic ions; and electrodes to apply an electric field to the semiconductor layer. A light which was polarized in a predetermined direction is input to the semiconductor layer. A magnetic field is applied to the semiconductor layer. An electric field is applied to the semiconductor layer by the electrodes. The light which was transmitted in the semiconductor layer is extracted. A degree of leakage of a wave function of the carrier in the well layer into the barrier layer changes. An effective magnetic field which a carrier spin feels changes by an exchange interaction between the carrier spin and a magnetic moment associated with the magnetic ions. Thus, a degree of magnetooptic effect which is given to the transmission light changes. The degree of manetooptic effect can be controlled by the applied electric field. The magnetooptic device is preferably used as an optical modulator or an optical isolator in the field of optical communications or optical memories.
Abstract:
A magnetic recording medium comprising a support, a first layer formed on the support by evaporating cobalt or its alloy by an oblique-incidence vacuum evaporation technique, and a second plated layer made of cobalt or its alloy and formed by a wet plating. The cobalt alloy for the first layer substantially consists of, aside from cobalt, up to 30 wt % of Ni, Fe, Cu, W, Cr, Ru or a mixture thereof. On the other hand, the cobalt alloy for the second layer substantially consists of up to 40 wt % of Ni, up to 8 wt % of P and the balance of Co.
Abstract:
A liquid crystal drive device having a differential-type input circuit including a differential amplification stage for receiving a differential signal and a buffer stage for generating an output signal on the basis of an output of the differential amplification stage, the liquid crystal drive device for receiving a signal of display data via the input circuit and outputting a signal for driving a liquid crystal panel on the basis of the display data, wherein a liquid crystal driving voltage VLCD larger than a power supply voltage VCC for logic to be supplied to the operation voltage buffer stage is supplied to the differential amplification stage of the input circuit. A standby function of interrupting an operation current of the differential amplification stage in a period where no display data is received is provided.
Abstract:
In the formation of images by a two-component development system, provided is a magnetic carrier that can be used to output an image which has sufficient density, in which few white spots are present in a low-density portion located near the boundary between a high-density region and a low-density region, and in which the low-density portion has good graininess. The magnetic carrier contains magnetic carrier particles each of which has resin and a magnetic particle. The magnetic particle contains ferrite phases and phases comprising a perovskite-structured compound. The ferrite phases and phases comprising a perovskite-structured compound are combined.
Abstract:
A semiconductor device in which a current is controlled by light includes a semiconductor member having a source unit and a drain unit and a channel unit through which electrons may flow between the source unit and the drain unit. The channel unit has a quantum well layer having a plurality of quantum energy levels and barrier layers provided adjacent to the well layer. Upon light irradiation of the quantum well layer, electrons make transitions between the different quantum energy levels, and the current flowing between the source unit and the drain unit is controlled by varying the mobility of these transitioned electrons.
Abstract:
An electron wave interference device includes a source electrode for injecting electrons therethrough, a drain electrode for taking out electrons therethrough, channel means for propagating electrons from the source electrode to the drain electrode and a gate electrode provided on a halfway portion of the channel means between the source electrode and the drain electrode for dividing the channel means into plural channels solely in the halfway portion of the channel means. A positional relationship between the channel means and the gate electrode is set so that a depletion layer is extended under the gate electrode toward the channel means by applying a given voltage to the gate electrode. The depletion layer extended through the channel means forms an island which inhibits the propagation of electrons in the channel means and thus divides the channel means into the plural channels.
Abstract:
There is disclosed a method of recording and/or reproducing in/from a Bloch line memory, including the step of: radiating or guiding a light beam to a vicinity of a distal end of a magnetic domain capabable of forming a Bloch line therein or on an extending line thereof.
Abstract:
A liquid crystal drive device having a differential-type input circuit including a differential amplification stage for receiving a differential signal and a buffer stage for generating an output signal on the basis of an output of the differential amplification stage, the liquid crystal drive device for receiving a signal of display data via the input circuit and outputting a signal for driving a liquid crystal panel on the basis of the display data, wherein a liquid crystal driving voltage VLCD larger than a power supply voltage VCC for logic to be supplied to the operation voltage buffer stage is supplied to the differential amplification stage of the input circuit. A standby function of interrupting an operation current of the differential amplification stage in a period where no display data is received is provided.