COMPOSITIONS AND METHODS OF USING PARTIAL GEL LAYERS IN A MICROFLUIDIC DEVICE

    公开(公告)号:US20220106547A1

    公开(公告)日:2022-04-07

    申请号:US17514659

    申请日:2021-10-29

    申请人: Emulate, Inc.

    IPC分类号: C12M3/06 C12M1/12 C12N5/071

    摘要: The present invention relates to the use of gels for cell cultures, including but not limited to microfluidic devices and transwell devices, for culturing cells, such as organ cells, e.g. airway cells, intestinal cells, etc., and co-culturing cells, (e.g. parenchymal cells and endothelial cells, etc). As one example, the use of gels results in improved lung cell cultures, such as when using transwells and microfluidic devices, (e.g. for culturing healthy airway epithelial cells, culturing diseased airway epithelial cells, e.g., CF epithelial cells that are ciliated). The present invention relates to fluidic devices, methods and systems for use with gel layers within a microfluidic device. In particular, a partial gel layer is disposed within a microchannel of a microfluidic device. For example, a partial gel layer has a thickness ranging between approximately 20-100 μm. A dilute partial gel layer of less than 100 μm may be formed from a polymer solution of 0.5 mg/ml. A cell-permeable partial gel layer having a thickness ranging between approximately 20-50 μm may be formed from a polymer solution of 1-3 mg/ml. A partial gel layer may be formed by a hydrodynamic shearing technique. Such thin gel layers can support a variety of cell cultures, including but not limited to single cells, cell populations, cell layers, differentiated cell layers, and/or primary tissues. The present invention is related to the field of imaging and image processing. In particular, the invention is related to imaging that supports the determination of cell membrane cilia beating frequency. For example, methods described herein encompass cilia beat frequency in the context of membrane region and/or distances between regions. Alternatively, the methods described here encompass cilia beat synchrony and correlation of beat frequency between cell membrane regions.