Abstract:
An apparatus includes a remote terminal unit (RTU) having a housing, where at least a portion of the housing includes a shell of thermally-conductive material. The RTU also includes at least one circuit board assembly having at least one processing device configured to communicate with one or more industrial control and automation field devices via one or more input/output (I/O) channels. The at least one circuit board assembly is positioned within the shell. The RTU further includes a heat sink configured to remove thermal energy from the at least one processing device. In addition, the RTU includes a thermal pad configured to receive the thermal energy from the heat sink and to provide the thermal energy to the shell.
Abstract:
A system includes a remote terminal unit (RTU) controller module. Each RTU controller module comprises a controller board configured to couple to a carrier board that includes first and second Ethernet ports. Each controller module comprises computer processing circuitry including the first and second MACs and configured to select to transmit a packet to the first Ethernet port through the first MAC and to alternatively select to transmit the packet to the second Ethernet port through the second MAC. Each controller module comprises an Ethernet switch configured to receive the packet from the first media access control (MAC) and transmit the packet to the first Ethernet port. Each controller module comprises a physical Ethernet interface (PHY) configured to receive the packet from the second MAC and transmit the packet to the second Ethernet port. The computer processing circuitry, the Ethernet switch, and the PHY are mounted on the controller board.
Abstract:
An apparatus includes a remote terminal unit (RTU) having a housing, where at least a portion of the housing includes a shell of thermally-conductive material. The RTU also includes at least one circuit board assembly having at least one processing device configured to communicate with one or more industrial control and automation field devices via one or more input/output (I/O) channels. The at least one circuit board assembly is positioned within the shell. The RTU further includes a heat sink configured to remove thermal energy from the at least one processing device. In addition, the RTU includes a thermal pad configured to receive the thermal energy from the heat sink and to provide the thermal energy to the shell.
Abstract:
An apparatus includes a remote terminal unit (RTU) having one or more input/output (I/O) modules and a controller module. Each of the one or more I/O modules includes multiple I/O channels. The controller module includes at least one processing device configured to communicate with at least one industrial field device via the I/O channels of the I/O modules. The controller module includes a first connector, and a first of the one or more I/O modules includes a second connector. The first connector is configured to be physically connected to the second connector, and the first and second connectors are configured to transport data and power directly between the controller module and the first I/O module.
Abstract:
An apparatus including a camera housing having an aperture, a camera having an imaging axis disposed in the housing with a lens disposed adjacent the aperture providing a field of view extending outwards through the aperture, around the imaging axis of the camera, at least one light source that illuminates the field of view of the camera, the light source is in an annular space between the lens and periphery of the aperture, at least one flap that supports the at least one light source, the flap extends around the annular space, the flap is pivotally attached to the camera and periphery of the aperture and an actuator that moves the camera along the imaging axis.
Abstract:
An apparatus includes a BLUETOOTH low energy (BLE) based emergency backup and recovery tool. The tool includes a backup power source that stores electric energy and outputs electric energy when a main power source is off. The tool includes a shared memory accessible by a processor and a BLE module. The shared memory stores information written by the processor, and operates using at least some of the electric energy output from the backup power source when the main power source is off. The tool includes the BLE module coupled to the backup power source. The BLE module operates using at least some of the electric energy output from the backup power source when the main power source is off, reads the information stored in the shared memory, and transmits the information to an external device through a wireless communication channel using a BLUETOOTH communication protocol.
Abstract:
A system includes a remote terminal unit (RTU) and a portable storage medium (PSM), such as a secure digital (SD) card. The RTU includes processing circuitry. The RTU includes a portable storage interface configured to physically connect to the PSM and electrically couple the PSM to the processing circuitry. The RTU includes on-chip memory. The processing circuitry is configured to determine that the PSM is coupled to the processing circuitry and access a specified folder of the PSM. The processing circuitry is configured to: in response to determining that the PSM stores function code in the specified folder, perform a specified function corresponding to the function code by executing the function code.
Abstract:
A system comprising first and second redundant controller modules, each controller module comprising mode management circuitry configured to identify whether the corresponding controller module operates in a master mode or a slave mode. The mode management circuitry in each controller module is configured to couple to the mode management circuitry in the other controller module. The mode management circuitries in the controller modules are configured to collectively operate so that one of the controller modules is assigned the master mode and the other of the controller modules is assigned the slave mode. At least one of the mode management circuitries in the controller modules is configured to assign the master mode to the corresponding controller module based on a takeover signal when the mode management circuitry in the corresponding controller module is ready for use.
Abstract:
An apparatus includes a remote terminal unit (RTU) having one or more input/output (I/O) modules and a controller module. Each of the one or more I/O modules includes multiple I/O channels. The controller module includes at least one processing device configured to communicate with at least one industrial field device via the I/O channels of the I/O modules. The controller module includes a first connector, and a first of the one or more I/O modules includes a second connector. The first connector is configured to be physically connected to the second connector, and the first and second connectors are configured to transport data and power directly between the controller module and the first I/O module.
Abstract:
A method is provided. The method includes receiving, at a first device, a request to transfer data over a Management Data Input/Output (MDIO) communication bus. The first device is configured to generate a first Management Data Clock (MDC) signal. The method also includes determining whether a second MDC signal from a second device is present on the communication bus. The method further includes in response to determining that the second MDC signal is not present on the communication bus, transmitting the first MDC signal and at least part of a Management Data Input/Output (MDIO) frame over the communication bus. The method includes in response to determining that the second MDC signal is present on the communication bus, refraining from transmitting the first MDC signal and at least the part of the MDIO frame over the communication bus.